
For decades, chosing a classical database system for application data has been a
fairly safe bet. That, however, changed in the late 00’s…

Once upon a time…
The 70’s was a significant decade in
many ways. Besides an oil crisis,
Watergate, The Jackson 5 and
Saturday Night Fever, it was also the
decade where Ted Codd proposed
the relational model for databases.
Early systems, Ingres and System R,
also arrived with an implementation
of this model. They were based on
architectural principles that
descendants, such as SQL Server,
Oracle, etc., adopted to a large
extend, and kept more or less
unaltered for over 30 years.
General-purpose row stores
The principles were introduced
when machine power was
expensive, manpower cheap and
transactions were often long-runnng.
They consist of a few key elemens:
row-wise storing of data, locking
mechanisms, buffer pool
management, logging and handling
of multi-threading. The classical
systems can be referred to as
general-purpose traditional row
stores (GPTRS), because they really
are general purpose in the sense
one size fits all. This means,
however, that they do not really
excel in any specific areas either. In
fact, the overhead induced by all the
above mechanisms constitutes a
whole 87% of the clock cycles used,

leaving only 13% to the actual work!
GPTRS systems also fall short when
it comes to scaling out to multiple
machines. Actually, they are not
built for scaling out at all, and
scaling must therefore be done
outside the core database.
Things have changed
Before the 00’s, the alternatives to
GPTRS were limited, and it was
therefore a relatively safe bet to go
with a GPTRS when designing a
new application. But in 2006,
Google published a paper about
their Bigtable storage, which
revealed how they handled the
massive scale of their data by
storing it in, what can be considered
as a gigant distributed hash table. It
was a taste of the NoSQL paradigm
which exploded in popularity shortly
thereafter. Let’s zoom in a bit…
A common property of the new
datastores is that they are built for
scaling out to a large number of
machines, transparenty without the
need for external sharding logic.
Often, adding new machines to the
cluster is very easy and data may
automatically migrate to the new
nodes when they arrive.
Many datastores handle replication
to multiple nodes out-of-the-box,
even across data centers, thereby
reducing the risk of data loss.
Some datastores are schema-less,
allowing for dynamic upgrades of
the data model without the need for
long-running table alterings.
Graph databases specializes in
associative data sets by storing
nodes and edges explicitly.

And for analytical processing,
dedicated column stores allow for
very efficient column-wise data
compression with a significant gain
in throughput as a consequence.
So…
There is nowadays a large variety of
specialized datastores offering real
scale-out, replication and high
throughput out-of-the-box. Cases
exist where a GPTRS is still the right
choice, but there can be a huge
potential in knowing the alternatives
before deciding on a datastore.

Recommended reading

• Ten Rules for Scalable
Perfomance in “Simple Operation”
Datastores by Michael
Stonebraker and Rick Cattell

• Cassandra (extensible record
store)

• MongoDB (document store)
• Redis (in-memory key-value store)
• Neo4j (graph database)
• Vertica (column store)
• VoltDB (in-memory SQL)

Classical database systems, whether
being from one of the major vendors
(SQL Server, Oracle, DB2) or an
open source alternative (MySQL,
PostgreSQL) all share the same
characteristics. This document briefly
describes these commonalities and
outlines alternative solutions that
may be valuable to consider.

11%

33%

23%

20%

13%

Useful work Locking
Logging Buffer pool
Multi-threading

Rasmus Resen Amossen, June 2015

There’s a new
kid in town

not
so

great
stuff

http://www.cattell.net/datastores/CACM-Paper.pdf
http://cassandra.apache.org/
http://www.mongodb.org/about/introduction/
http://redis.io/topics/introduction
http://www.apple.com
http://www.vertica.com/about
http://voltdb.com/
http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
http://www.cattell.net/datastores/CACM-Paper.pdf
http://cassandra.apache.org/
http://www.mongodb.org/about/introduction/
http://redis.io/topics/introduction
http://www.apple.com
http://www.vertica.com/about
http://voltdb.com/
http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf

