
Vertical partitioning of relational OLTP

databases using integer programming

Rasmus Resen Amossen∗

IT University of Copenhagen

November 2009

Abstract

A way to optimize performance of relational row store databases is to
reduce the row widths by vertically partitioning tables into table fractions
in order to minimize the number of irrelevant columns/attributes read by
each transaction. This paper considers vertical partitioning algorithms
for relational row-store OLTP databases with an H-store-like architec-
ture, meaning that we would like to maximize the number of single-sited
transactions. We present a model for the vertical partitioning problem
that, given a schema together with a vertical partitioning and a workload,
estimates the costs (bytes read/written by storage layer access methods
and bytes transferred between sites) of evaluating the workload on the
given partitioning. The cost model allows for arbitrarily prioritizing load
balancing of sites vs. total cost minimization. We show that finding a
minimum-cost vertical partitioning in this model is NP-hard and present
two algorithms returning solutions in which single-sitedness of read queries
is preserved while allowing column replication (which may allow a drasti-
cally reduced cost compared to disjoint partitioning). The first algorithm
is a quadratic integer program that finds optimal minimum-cost solutions
with respect to the model, and the second algorithm is a more scalable
heuristic based on simulated annealing. Experiments show that the algo-
rithms can reduce the cost of the model objective by 37% when applied
to the TPC-C benchmark and the heuristic is shown to obtain solutions
with cost close to the ones found using the quadratic program.

1 Introduction

In this paper we consider OLTP databases with an H-store [18] like architecture
in which we would aim for maximizing the number of single-sited transactions
(i.e. transactions that can be run to completion on a single site). Given a
database schema and a workload we would like to reduce the cost of evaluating
the workload. In row-stores, where each row is stored as a contiguous segment
and access is done in quantums of whole rows, a significant amount of super-
fluous columns/attributes (we will use the term attribute in the following) are
likely to be accessed during evaluation of a workload. It is easy to see that this
superfluous data access may have a negative impact on performance so in an

∗email: rasmus@resen.org

1

optimal world the amount of data accessed by each query should be minimized.
One approach to this is to perform a vertical partitioning of the tables in the
schema. A vertical partitioning is a, possibly non-disjoint, distribution of at-
tributes and transactions onto multiple physical or logical sites. The optimality
of a vertical partitioning depends on the context: OLAP applications with lots
of many-row aggregates will likely benefit from parallelizing the transactions
on multiple sites and exchanging small sub-results between the sites after the
aggregations. OLTP applications on the other hand, with many short-lived
transactions, no many-row aggregates and with few or no few-row aggregates
would likely benefit from gathering all attributes read by a query locally on
the same site: inter-site transfers and the synchronization mechanisms needed
for non-single-sited or parallel queries (e.g. undo and redo logs) are assumed
to be bottlenecks in situations with short transaction durations. Stonebraker
et al. [18] and Kallman et al. [10] discuss the benefits of single-sitedness in
high-throughput OLTP databases in more details.

This paper presents a cost model together with two algorithms that find
either optimal or close-to-optimal vertical partitionings with respect to the cost
model. The two algorithms are based on quadratic programming and simulated
annealing, respectively. For a given partitioning and a workload, the cost model
estimates the number of bytes read/written by access methods in the storage
layer and the amount of data transfer between sites. Our model is made with a
specific setting in mind, captured by five headlines:

OLTP The database is a transaction processing system with many short lived
transactions.

Aggregates No many-row aggregates and few (or no) aggregates on small row-
subsets.

Preserve single-sitedness We should try to avoid breaking single-sitedness
as a large number of single-sited transactions will reduce the need for
inter-site transfers and completely eliminate the need for undo and redo
logs for these queries if the partitioning is performed on an H-store like
DMBS [18].

Workload known Transactions used in the workload together with some run-
time statistics are assumed to be known when applying the algorithms.

Latency is negligible Following the consensus in the related work (see Sec-
tion 1.3) we simplify the model by assuming that time spent on network
latency is negligible compared to time spent on network data transfer. If
all partitions are placed locally on a single site, then this is trivially true
as both sizes become zero. Appendix A describes how to include latency
in the model at the expense of increased complexity.

1.1 Outline of approach

The basic idea is as follows. We are given an input in form of a schema together
with a workload in which queries are grouped into transactions, and each query
is described by a set of statistical properties.

For each query q in the workload and for each table r accessed by q the
input provides the average number nr of rows from table r that is retrieved

2

from or written to storage by query q. Together with the (average) width wa of
each attribute a from table r this generally gives a good estimate for how much
attribute a costs in retrievals/writes by access methods for each evaluation of
query q, namely W ′

a,q = wa · nr.
Given a set of sites, the challenge is now to find a non-disjoint distribution

of all attributes, and a disjoint distribution of transactions to these sites so
that the costs of retrievals, writes and inter-site transfers, each defined in terms
of W ′

a,q as explained in details below, is minimized. This means, that the
primary executing site of any given query is assumed to be the site that hosts
the transaction holding that query.

As mentioned above, our algorithms will not break single-sitedness for read
queries and therefore no additional costs are added to the execution of read
queries by applying this algorithm. In contrast, since the storage costs (the sum
of retrieval, write and inter-site transfer costs) for a query is minimized and each
tuple become as narrow as possible, the total costs of evaluating the queries (e.g.
processing joins, handling intermediate subresults, etc.) are assumed to be, if
not minimized, then reduced too.

1.2 Contributions

This paper contributes with the following:

• a somewhat precise algorithm optimized for H-store like DBMSes, pre-
serving single-sitedness for read queries and in which load balance among
sites versus minimization of total costs can be prioritized arbitrarily,

• a more scalable heuristic, and

• a micro benchmark of a) both algorithms based on TPC-C and a set of
random instances, b) a comparison between the benefits of local versus
remote partition location, and c) a comparison between disjoint and non-
disjoint partitioning.

1.3 Related work

A lot of work has been done on data allocation and vertical partitioning but
to the best of our knowledge, no work solves the exact same problem as the
present paper: distributing both transactions and attributes to a set of sites,
allowing attribute replication, preserving single-sitedness for read queries and
prioritizing load balancing vs. total cost minimization. We therefore order the
references below by increasing estimated problem similarity and do not mention
work dedicated on vertical partitioning of OLAP databases.

In 1976 Eisner [6] reduced the cost of information retrieval by vertically
partitioning records into a primary and a secondary record segment. This was
done by constructing a bi-partite graph with two node sets: one set with a node
for each attribute and one set with a node for each transaction. By connecting
attribute and transaction nodes with a weighted edge according to their affinity,
a min-cut algorithm could be applied to construct the partitioning.

Sacca and Wiederhold [15] assumed a set of horizontal and vertical fragments
of a database was known in advance and produced a disjoint distribution of

3

these fragments onto a set of network-connected processors using a greedy first-
fit bin packing heuristic. Similarly, Menon [12] distributed a set of predefined
fragments to a set of sites, but used a linearized quadratic program to compute
the solution.

Sarathy et al. [16] took as input a geographically distributed database to-
gether with statistics for a query pattern on this database and produced as
output a non-disjoint distribution of whole database tables to the physical sites
so that the total amount of transfer was minimized. They modelled the problem
as a linearized quadratic program which was solved in practice using heuristics.
The costs of joins were minimized by first transferring join keys and then trans-
ferring the relevant attributes for the relevant rows to a single collector site.

Navathe and Ra [14] constructed a disjoint partitioning with non-remote
partition placement. They used an attribute affinity matrix to represent a com-
plete weighted graph and generated partitions by finding a linearly connected
spanning tree and considering a cycle as a fragment.

Cornell and Yu [5] generated a non-remote, disjoint partitioning minimizing
the amount of disk access by recursively applying a binary partitioning. The
partitioning decisions were based on an integer program and with strong as-
sumptions on a System-R like architecture when estimating the amount of disk
access.

Agrawal et al. [2] also constructed a disjoint partitioning with non-remote
partition placement. They used a two-phase strategy where the first phase
generated all relevant attribute groups using association rules [1] considering
only one query at a time, and the second phase merged the attribute groups
that were useful across queries.

Son and Kim [17] presented an algorithm for generating disjoint partitioning
by either minimizing costs or by ensuring that exactly k vertical fragments were
produced. Inter-site transfer costs were not considered. The partitioning was
produced using a bottom-up strategy, iteratively merging two selected partitions
with the best “merge profit” until only one large super-partition existed. The
k-way partitioning was found at the iteration having exactly k partitions and
the lowest-cost partitioning was found at the iteration with the lowest cost.

Chu and Ieong [4] minimized the amount of disk access by constructing
a non-remote and non-disjoint vertical partitioning. Two binary partitioning
algorithms based on the branch-and-bound method were presented with varying
complexity and accuracy. The partitionings were formed by recursively applying
the binary partitioning algorithms on the set of “reasonable cuts”.

Chakravarthy et al. [3] did not present an algorithm but gave an interesting
objective function for evaluating vertical partitionings. The function was based
on the square-error criterion as given in [8] for data clustering, but did not
cover placement of transactions which, in our case, has a large influence on the
expected costs.

Navathe et al. [13] considered the vertical partitioning problem for three dif-
ferent environments: a) single site with one memory level, b) single site with
several memory levels, and c) multiple sites. The partitions could be both dis-
joint and non-disjoint. A clustering algorithm grouped attributes with high
affinity by using an attribute affinity matrix together with a bond energy al-
gorithm [9]. Three basic algorithms for generating partitions were presented
which, depending on the desired environment, used different prioritization of
four access and transfer cost classes.

4

1.4 Outline of paper

In section 2 we derive a cost model together with a quadratic program defining
the first algorithm. Section 3 describes a heuristic based on the cost model
found in Section 2, and Section 4 discusses a couple of ideas for improvements.
Computational results are shown in Section 5.

2 A linearized QP approach

In this section we develop our base model, a quadratic program (QP), which
will later be extended to handle load balancing and then linearized in order to
solve it using a conventional mixed integer program (MIP) solver.

2.1 The base model

In a vertical partitioning for a schema and a workload we would like to minimize
the sum

A+ pB (1)

where A is the amount of data accessed locally in the storage layer, B is the
amount of data needed to be transferred over the network during query updates
and p is a penalty factor.

We assume that each transaction has a primary executing site. For each
transaction t ∈ T , each table attribute a ∈ A, and each site s ∈ S consider
two decision variables xt,s ∈ {0, 1} and ya,s ∈ {0, 1} indicating if transaction
t is executed on site s and if attribute a is located on site s, respectively. All
transactions must be located at exactly one site (their primary executing site),
that is ∑

t∈T

xt,s = 1 , ∀s ∈ S (2)

and all attributes must be located at at least one site, that is

∑

a∈A

ya,s ≥ 1 , ∀s ∈ S.

To determine the size of A and B from equation (1) introduce five new static
binary constants describing the database schema:

• αa,q indicates if attribute a itself is accessed by query q

• βa,q indicates if attribute a is part of a table that q accesses

• γq,t indicates if query q is used in transaction t

• δq indicates if query q is a write query

• ϕa,t indicates if any query in transaction t reads attribute a

Single-sitedness should be maintained for reads. That is, if a read query in
transaction t accesses attribute a then a and t must be co-located:

xt,sϕa,t = 1⇒ ya,s = 1 , ∀t ∈ T , a ∈ A

5

or equivalently
ya,s − xt,sϕa,t ≥ 0 , ∀t ∈ T , a ∈ A.

In order to estimate the cost of reading, writing and transferring data, in-
troduce the following weights:

• wa denotes the average width of attribute a

• fq denotes the frequency of query q

• na,q denotes for query q the average number of rows retrieved from or
written to the table holding attribute a

Then the cost of reading or writing a in query q is estimated toWa,q = wa·fq·na,q

and the cost of transferring attribute a over the network is estimated to pWa,q.
Notice, that Wa,q is only an estimate due to fq and na,q.

Consider the amount of local data access, A, and let A = AR + AW where
AR and AW is the amount of read and write access, respectively. For a given
site r and query q, AR is the sum of all attribute weights Wa,q for which 1) q
is a read query, 2) attribute a is stored on r, 3) the transaction that executes
query q is executed on r and 4) q accesses any attribute in the table fraction
that holds a. As we maintain single-sitedness for reads, βa,q can be used to
handle 4), resulting in

AR =
∑

a,t,s,q

Wa,qβa,qγq,t(1− δq)xt,sya,s.

Accounting for local access of write queries, AW, is less trivial. Consider the
following three approaches:

Access relevant attributes An attribute a at site s should be accounted for
if and only if there exists an attribute a′ on s that q updates so that a
and a′ are attributes of the same table. While this accounting is the most
accurate of the three it is also the most expensive as it implies an element
of the form ya,sya′,s in the objective function which adds an undesirable
amount of |A|2|S| variables and 3|A|2|S| constraints to the problem when
linearized (see Section 2.3).

Access all attributes We can get around the increased complexity by assum-
ing that write queries q always writes to all sites containing table fractions
of tables accessed by q, regardless of whether q actually accesses any of
the attributes of the fractions. While this is correct for insert statements
(assuming that inserts always write complete rows) it is likely an overes-
timation for updates: imagine a lot of single-attribute updates on a wide
table where the above method would have split the attribute in question
to a separate partition. This overestimation will imply that the model will
be less willing to replicate attributes than the accounting model described
above.

Access no attributes Another approach to simplify the cost function is to
completely avoid accounting for local access for writes and solely let the
network transfer define the write costs. With this underestimation of write
costs, attributes will then tend to be replicated more often than in the first
accounting model.

6

In this paper we choose the second approach, which gives a conservative overes-
timate of the write costs as we then obtain more accurate costs for inserts and
avoid extending the model with undesirably many variables and constraints.
We now have

AW =
∑

q,a,s

Wa,qβa,qδqya,s

and thus

A =
∑

a,t,s,q

Wa,qβa,qγq,t(1− δq)xt,sya,s +
∑

q,a,s

Wa,qβa,qδqya,s. (3)

B accounts for the amount of network transfer and since we enforce single-
sitedness for all reads B is solely the sum of transfer costs for write queries. We
assume that write queries only transfer the attributes they update and does not
transfer to the site that holds their own transaction:

B =
∑

a,t,s,q

Wa,qαa,qγq,tδq(1− xt,s)ya,s.

By noticing that
∑

a,t,s,q αa,qγq,tya,s =
∑

a,s,q αa,qya,s we can construct the
minimization problem as

min
∑

t,a,s c1(a, t)xt,sya,s +
∑

a,s c2(a)ya,s

s.t.
∑

s xt,s = 1 ∀t∑
s ya,s ≥ 1 ∀a

ya,s − xt,sϕa,t ≥ 0 ∀a, t
xt,s, ya,s ∈ {0, 1} ∀t, a, s

(4)

where
c1(a, t) =

∑

q

Wq,aγq,t(βa,q(1− δq)− pαa,qδq)

and
c2(a) =

∑

q

Wa,qδq(βa,q + pαa,q).

Both c1 and c2 are completely induced by the schema, query workload and
statistics and can therefore be considered static when the partitioning process
starts.

2.2 Adding load balancing

We are interested in extending the model in (4) to also handle load balancing
of the sites instead of just minimizing the sum of all data access/transfer. From
equation (3) define the work of a single site s ∈ S as

∑

a,t

c3(a, t)xt,sya,s +
∑

a

c4(a)ya,s (5)

where c3(a, t) =
∑

q Wa,qγq,tβa,q(1− δq) and c4(a) =
∑

q Wa,qβa,qδq. Introduce
the variable m and for each site s let the value of (5) be a lower bound for m.
Adding m to the objective function is then equivalent to also minimizing the
work of the maximally loaded site.

7

In order to decide how to prioritize cost minimization versus load balancing
in the model, introduce a scalar 0 ≤ λ ≤ 1 and weight the original cost from (4)
and m by λ and (1− λ), respectively. The new objective is then

λ
∑

a,t,s

c1(a, t)xt,sya,s + λ
∑

a,s

c2(a)ya,s + (1− λ)m (6)

where m is constrained as follows:
∑

a,t

c3(a, t)xt,sya,s +
∑

a,q

c4(a)ya,s ≤ m , ∀s ∈ S.

Notice that while we are now minimizing (6), the objective of (4) should still
be considered as the actual cost of a solution.

2.3 Linerarization

We use the technique discussed in [7, Chapter IV, Theorem 4] to linearize the
model. This is done by replacing the quadratic terms in the model with a
variable ut,a,s and adding the following new constraints:

ut,a,s ≤ xt,s ∀t, a, s
ut,a,s ≤ ya,s ∀t, a, s
ut,a,s ≥ xt,s + ya,s − 1 ∀t, a, s

Notice, that ut,a,s = 1 if and only if xt,s = ya,s = 1 and that ut,a,s is guaranteed
to be binary if both xt,s and ya,s are binary (thus, there is no need for requiring
it explicitly in the model).

Now, the model in (4) extended with load balancing looks as follows when
linearized:

min λ
∑

t,a,s c1(a, t)ut,a,s + λ
∑

a,s c2(a)ya,s + (1 − λ)m

s.t.
∑

s xt,s = 1 ∀t∑
s ya,s ≥ 1 ∀a

ya,s − xt,sϕa,t ≥ 0 ∀a, t∑
a,t c3(a, t)ua,t,s +

∑
a,q c4(a)ya,s ≤ m ∀s

ut,a,s − xt,s ≤ 0 ∀t, a, s
ut,a,s − ya,s ≤ 0 ∀t, a, s

ut,a,s − xt,s − ya,s + 1 ≥ 0 ∀t, a, s
xt,s, ya,s ∈ {0, 1} ∀t, a, s

ut,a,s ≥ 0 ∀t, a, s

(7)

2.4 Complexity

The objective function in quadratic programs can be written on the form

1

2
zTQz + cz + d

where in our case z = (x1,1, . . . , x|T |,|S|, y1,1, . . . , x|A|,|S|) is a vector containing
the decision variables, Q is a cost matrix, c is a cost vector and d a constant.
Q can be easily defined from (6) by dividing Q into four quadrants, letting the
sub-matrices in the upper-left and lower-right quadrant equal zero and letting
the upper-right and lower-left submatrices be defined by c1(a, t). Q is indefinite
and the cost function (6) therefore not convex. As shown by Marty and Judice
[11] finding optimum when Q is indefinite is NP-hard.

8

3 The SA solver – a heuristic approach

We develop a heuristic based on simulated annealing (see [19]) and will refer
to it as the SA-solver from now on. The base idea is to alternately fix x and
y and only optimize the not-fixed vector, thereby simplifying the problem. In
each iteration we search in the neighborhood of the found solution and accept
a worse solution as base for a further search with decreasing probability.

Let xt,s hold an assignment of transactions to sites and define the neighbor-
hood x′ of x as a change of location for a subset of the transactions so that for
each t ∈ T we still have

∑
s x

′
t,s = 1. Similarly, let ya,s hold an assignment of

attributes to sites but define the neighborhood y′ of y as an extended replication
of a subset of the attributes. That is, for each a ∈ A in that subset we have
ya,s = 1 ⇒ y′a,s and

∑
s y

′
a,s >

∑
s ya,s. We found that altering the location

for a constant number of 10% of both transactions/attributes yielded the best
results. The heuristic now looks as pictured in Algorithm 1. Notice, that the

Algorithm 1 The heuristic based on simulated annealing (SA). It iteratively
fixes x and y and accepts a worse solution from the neighborhood with decreasing
probability.

1: Initialize temperature τ > 0 and reduction factor ρ ∈]0; 1[
2: Set the number L of inner loops
3: Initialize x randomly so that (2) is satisfied
4: fix ← “x”
5: S ← findSolution(fix)
6: while not frozen do

7: for i ∈ {1, . . . , L} do

8: x← neighborhood of x
9: y ← neighborhood of y

10: S′ ← findSolution(fix)
11: ∆← cost(S′)− cost(S)
12: p← a randomly chosen number in [0; 1]
13: if ∆ ≤ 0 or p < e−∆/τ then

14: S ← S′

15: end if

16: fix ← the element in {“x”,“y”} \ {fix}
17: end for

18: τ ← ρ · τ
19: end while

linearization constraints is not needed since either x or y will be constant in
each iteration. This reduces the size of the problem considerably.

4 Further improvements

Consider a table with n attributes together with two queries: one accessing at-
tribute 1 through k and one accessing attribute k through n. Then it is sufficient
to find an optimal distribution for the three attribute groupings {1, . . . , k − 1},
{k} and {k + 1, . . . , n}, considering each group as an atomic unit and thereby
reducing the problem size. In general, it is only necessary to distribute groups

9

of attributes induced by query access overlaps. Chu and Ieong [4] refer to these
attribute overlaps as reasonable cuts. Even though this will not improve the
worst-case complexity, this reduction may still have a large performance impact
on some instances.

Also, assuming that transactions follow the 20/80 rule (20% of the transac-
tions generate 80% of the load), the problem can be solved iteratively over T
starting with a small set of the most heavy transactions.

5 Computational results

We assume that the context is a database with a very high transaction count like
the memory-only database H-store [18] (now VoltDB1) and thus need to compare
RAM access versus network transfer time when deciding an appropriate network
penalty factor p. A PCI Express 2.0 bus transfers between 32 Gbit/s and 128
Gbit/s while the bandwidth of PC3 DDR3-SDRAM is at least 136 Gbit/s so
the bus is the bottleneck in RAM accesses. We assume that the network is well
configured and latency is minimal. Therefore the network penalty factor could
be estimated to p ∈ [3; 128] if either a gigabit or 10-gigabit network is used to
connect the physical sites. We assume the use of a 10-gigabit network and set
p = 8 in our tests unless otherwise stated.

We furthermore mainly focus on minimizing the total costs of execution and
therefore set λ low. If λ is kept positive the model will, however, choose the
more load balanced layout if there is a cost draw between multiple layouts. We
set λ = 0.1 in our tests unless otherwise stated.

All tests were run on a MacBook Pro with a 2.4 GHz Intel Core 2 Duo
and 4GB 1067 MhZ DDR3 RAM, running Mac OS X 10.5. The GNU Linear
Programming Kit2 (GLPK) 4.39 was used as MIP solver, using only a single
thread.

The test implementation is available upon request.

5.1 Initial temperature

The temperature τ used in the heuristic described in Section 3 determines how
willing the algorithm is to accept a worse solution than the currently best found.
Let C∗ and C denote the objective for the best solution so far and the currently
generated solution, respectively. In the computational results provided here we
accept a worse solution with 50% probability in the first set of iterations if
C−C∗

C < 5%. Referring to the notation used in Algorithm 1, we have 50% =

e0.05C∗/τ and thus an initial temperature of τ = −0.05C∗/ ln 0.5.

5.2 The TPC-C v5 instance

We perform tests on the TPC-C version 5.10.1 benchmark3. The TPC-C specifi-
cation describes transactions, queries and database schema but does not provide
the statistics needed to create a problem instance. We therefore made some sim-
plified assumptions: all queries are assumed to run with equal frequency and

1http://voltdb.com
2http://gnu.org/software/glpk
3http://www.tpc.org/tpcc

10

all queries (not transactions) are assumed to access a single row except in the
obvious cases where aggregates are used or there are being iterated over the
result. In these cases we assume that the query accesses 10 rows. Thereby, the
New-Order transaction for example, are assumed to access 11 rows in average.

We model UPDATE queries as two sub-queries: A read-query accessing all
the attributes used in the original query and a write-query only accessing the
attributes actually being written (and thus whose update needs to be distributed
to all replicas).

5.3 Random instances

To the best of our knowledge there is no standard library of typical OLTP
instances with schemas, workloads and statistics so in order to explore the char-
acteristics of the algorithms we perform some experiments on a set of randomly
generated instances instead as it showed up to be a considerable administrative
and bureaucratic challenge (if possible at all) to collect appropriate instances
from “real life” databases. The randomly generated instances vary in several
parameters in order to clarify which characteristics that influence the potential
cost reduction by applying our vertical partitioning algorithms. The parame-
ters include: number of transactions in workload, number of tables in schema,
maximum number of attributes per table, maximum number of queries per
transaction, percentage of queries being updates, maximum number of different
tables being referred to from a single query, maximum number of individual at-
tributes being referred to by a single query, the set of allowed attribute widths.
We define classes of problem instances by upper bounds on all parameters. In-
dividual instances are then generated by choosing the value of each parameter
evenly distributed between 1 and its upper bound. That is, if e.g. the maximum
allowed number of attributes in tables is k, the number of table attributes for
each table in the generated instance will be evenly distributed between 1 and k
with a mean of k/2.

5.4 Results

In the following we perform a series of tests and display the results in tables
where each entry holds the found objective of (4) for the given instance.

Table 1 explores the influence of a set of parameters in the randomly gener-
ated instances by varying one parameter at a time while fixing the rest. We test
two classes of instances using the SA solver: a smaller with #tables = |T | =
20 and a larger with #tables = |T | = 100. The results suggest that the largest
workload reduction is obtained for instances having relatively few queries per
transaction, few updates, many attributes per table and/or a moderate number
of attribute references per query. The number of table references per query and
the allowed attribute widths, however, only seem to have moderate influence on
the result.

Table 3 compares the QP and SA solvers on the TPC-C benchmark and a
set of randomly generated larger instances, divided into two classes with either
large or low potential for cost reduction. The random instances are described
in Table 2 where the columns here refer to the single-letter labels for the pa-
rameters shown in Table 1. As seen in Table 3 the SA solver is generally

11

#tables = |T | = 20 #tables = |T | = 100
|S| = 1 |S| = 2 |S| = 3 |S| = 1 |S| = 2 |S| = 3

A Max queries
per transaction

1 0.585 0.309 0.278 3.194 1.784 1.471
3 1.567 1.478 1.386 5.743 4.550 4.189
5 1.305 1.054 0.972 8.840 7.569 6.983

B Percent
updates queries

0 1.747 1.369 1.110 5.959 4.235 3.510
10 1.567 1.478 1.386 5.743 4.550 4.189
30 1.349 1.244 1.263* 5.106 4.555 4.462

C Max attributes
per table

5 0.520 0.520* 0.520* 2.583 2.772* 2.712*
15 1.567 1.478 1.386 5.743 4.550 4.189
35 1.643 0.968 0.850 14.970 7.341 5.355

D Max table
references per
query

2 0.602 0.430 0.356 3.447 3.022 2.865
5 1.567 1.478 1.386 5.743 4.550 4.189

10 2.246 1.607 1.516 8.147 6.063 5.623
E Max attribute
references per
query

5 0.678 0.288 0.199 5.176 2.526 1.969
15 1.567 1.478 1.386 5.743 4.550 4.189
25 1.115 0.988 1.008* 5.641 5.909* 5.684*

F Allowed
attribute widths

{2, 4, 8} 1.194 1.080 1.030 4.456 3.488 3.500*
{4,8} 1.567 1.478 1.386 5.743 4.550 4.189

{4, 8, 16} 2.387 2.160 2.060 8.912 6.977 7.000

Table 1: Comparing the effect of parameter changes. Results were found
using the SA solver. We test three possible values for each parameter,
varying one parameter at the time and fixing all other parameters at their
default value (marked with bold). The costs are shown in units of 106. Tests
are divided into two classes having both the number of transactions and
schema tables equal to 20 (left) and 100 (right), respectively. The results
suggest that the largest workload reduction, unsurprisingly, is obtained for
instances having relatively few queries per transaction, few updates, many
attributes per table and/or a moderate number of attribute references per
query. The number of table references per query and the allowed attribute
widths, however, only seem to have moderate influence on the result.

Name A B C D E F |T | #tables
rndAt4x15 3 10 30 3 8 {2, 4, 8, 16} 15 4
rndAt8x15 3 10 30 3 8 {2, 4, 8, 16} 15 8
rndAt8x15u50 3 50 30 3 8 {2, 4, 8, 16} 15 8
rndAt16x15 3 10 30 3 8 {2, 4, 8, 16} 15 16
rndAt32x15 3 10 30 3 8 {2, 4, 8, 16} 15 32
rndAt4x100 3 10 30 3 8 {2, 4, 8, 16} 100 4
rndAt8x100 3 10 30 3 8 {2, 4, 8, 16} 100 8
rndAt16x100 3 10 30 3 8 {2, 4, 8, 16} 100 16
rndAt32x100 3 10 30 3 8 {2, 4, 8, 16} 100 32
rndBt4x15 3 10 5 6 28 {2, 4, 8, 16} 15 4
rndBt8x15 3 10 5 6 28 {2, 4, 8, 16} 15 8
rndBt16x15 3 10 5 6 28 {2, 4, 8, 16} 15 16
rndBt16x15u50 3 50 5 6 28 {2, 4, 8, 16} 15 16
rndBt32x15 3 10 5 6 28 {2, 4, 8, 16} 15 32
rndBt4x100 3 10 5 6 28 {2, 4, 8, 16} 100 4
rndBt8x100 3 10 5 6 28 {2, 4, 8, 16} 100 8
rndBt16x100 3 10 5 6 28 {2, 4, 8, 16} 100 16
rndBt32x100 3 10 5 6 28 {2, 4, 8, 16} 100 32

Table 2: Random instances used when comparing the QP and SA solvers
in Table 3. The instances in the upper part (rndA. . .) are expected to
get a large cost reduction while instances in the lower part (rndB. . .) are
expected to get a small cost reduction. The columns refer to the single-
letter labels for the parameters shown in Table 1.

12

QP SA
Instance |A| |T | |S| Cost Time (s) Cost Time (s) |S| = 1
TPC-C v5 92 5 2 0.133 1 0.138 5 0.208
TPC-C v5 92 5 3 0.132 6 0.132 5 0.208
TPC-C v5 92 5 4 0.132 33 0.132 5 0.208

rndAt4x15 54 15 4 (0.332) 1800 0.396 10 0.933
rndAt8x15 105 15 4 (0.324) 1800 0.327 18 0.808
rndAt16x15 225 15 4 (0.267) 1800 0.309 41 1.180
rndAt32x15 492 15 4 (0.315) 1800 0.217 89 1.491
rndAt64x15 1023 15 4 (0.269) 1800 0.268 190 1.452
rndAt4x100 54 100 4 (8.001) 1800 8.246 79 7.946
rndAt8x100 105 100 4 (7.681) 1800 8.018 150 7.454
rndAt16x100 225 100 4 - t/o 6.525 321 8.741
rndAt32x100 492 100 4 - t/o 4.501 728 8.916
rndAt64x100 1023 100 4 - t/o 4.119 1531 9.591

rndBt4x15 12 15 4 0.303 65 0.303 3 0.303
rndBt8x15 27 15 4 (0.448) 1800 0.424 6 0.440
rndBt16x15 49 15 4 (0.333) 1800 0.334 9 0.385
rndBt32x15 98 15 4 (0.319) 1800 0.319 16 0.361
rndBt64x15 210 15 4 (0.221) 1800 0.221 31 0.229
rndBt4x100 54 100 4 (4.484) 1800 2.251 18 2.251
rndBt8x100 105 100 4 (4.323) 1800 2.419 37 2.419
rndBt16x100 225 100 4 (2.001) 1800 1.774 62 1.774
rndBt32x100 492 100 4 (2.419) 1800 1.999 124 1.999
rndBt64x100 1023 100 4 - 1800 2.473 270 2.473

Table 3: Comparing the QP algorithm with the simulated annealing based
heuristic (SA), allowing attribute replication and with remote partition
placement. Costs are shown in units of 106. The SA algorithm had a 30
second time limit for each iteration and if the limit was reached it pro-
ceeded with another neighborhood. The QP algorithm had a time bound
of 30 minutes and an MIP tolerance gap of 0.1%. Where the time limit
was reached, the best found cost (if any) is written in parentheses. “t/o”
indicates that no integer solution was found within the time limit.

13

faster than the QP solver but the QP solver obtains lower costs when the in-
stances are small. Expectedly, the instances in class “rndB. . . ” with many
attribute references per query but few queries per table gains little or no cost
reduction by applying the algorithms. TPC-C, on the other hand, gets a cost
reduction of 37% and the random instances in class “rndA. . . ”, with many at-
tributes per table and relatively few attribute references per query, get a cost
reduction between 25% and 85%. None of the algorithms found a cost reduction
for the instances rndAt4x100 and rndAt8x100 because of the “overweight” of
transactions compared to the number of attributes in the schemas.

Table 4 depicts an actual partitioning of TPC-C constructed by the QP
solver for three sites.

Site 1

Transaction Payment

Customer.C BALANCE

Customer.C CITY

Customer.C CREDIT

Customer.C CREDIT LIM

Customer.C DATA

Customer.C DISCOUNT

Customer.C D ID

Customer.C FIRST

Customer.C ID

Customer.C LAST

Customer.C MIDDLE

Customer.C PHONE

Customer.C SINCE

Customer.C STATE

Customer.C STREET 1

Customer.C STREET 2

Customer.C W ID

Customer.C ZIP

District.D CITY

District.D ID

District.D NAME

District.D STATE

District.D STREET 1

District.D STREET 2

District.D W ID

District.D YTD

District.D ZIP

History.H AMOUNT

History.H C D ID

History.H C ID

History.H C W ID

History.H DATA

History.H DATE

History.H D ID

History.H W ID

OrderLine.OL DIST INFO

OrderLine.OL NUMBER

Stock.S ORDER CNT

Stock.S REMOTE CNT

Stock.S YTD

Warehouse.W CITY

Warehouse.W ID

Warehouse.W NAME

Warehouse.W STREET 1

Warehouse.W STREET 2

Warehouse.W YTD

Warehouse.W ZIP

Site 2

Transaction StockLevel

Customer.C CITY

Customer.C DELIVERY CNT

Customer.C PAYMENT CNT

Customer.C SINCE

Customer.C YTD PAYMENT

District.D ID

District.D NEXT O ID

District.D W ID

Item.I IM ID

OrderLine.OL D ID

OrderLine.OL I ID

OrderLine.OL O ID

OrderLine.OL W ID

Stock.S I ID

Stock.S QUANTITY

Stock.S W ID

Site 3

Transaction Delivery

Transaction NewOrder

Transaction OrderStatus

Customer.C BALANCE

Customer.C CREDIT

Customer.C DISCOUNT

Customer.C D ID

Customer.C FIRST

Customer.C ID

Customer.C LAST

Customer.C MIDDLE

Customer.C W ID

District.D ID

District.D NEXT O ID

District.D TAX

District.D W ID

Item.I DATA

Item.I ID

Item.I NAME

Item.I PRICE

NewOrder.NO D ID

NewOrder.NO O ID

NewOrder.NO W ID

Order.O ALL LOCAL

Order.O CARRIER ID

Order.O C ID

Order.O D ID

Order.O ENTRY D

Order.O ID

Order.O OL CNT

Order.O W ID

OrderLine.OL AMOUNT

OrderLine.OL DELIVERY D

OrderLine.OL D ID

OrderLine.OL I ID

OrderLine.OL O ID

OrderLine.OL QUANTITY

OrderLine.OL SUPPLY W ID

OrderLine.OL W ID

Stock.S DATA

Stock.S DIST 01

Stock.S DIST 02

Stock.S DIST 03

Stock.S DIST 04

Stock.S DIST 05

Stock.S DIST 06

Stock.S DIST 07

Stock.S DIST 08

Stock.S DIST 09

Stock.S DIST 10

Stock.S I ID

Stock.S QUANTITY

Stock.S W ID

Warehouse.W ID

Warehouse.W TAX

Table 4: The result of a vertical partitioning of the TPC-C benchmark
using the QP solver for three sites. Each column represents the contents
of a site and is divided into three sub-sections: a header, a section holding
the transaction names and a longer section holding the attributes assigned
to the respective site.

Table 5 illustrates the effect of disjoint versus nondisjoint partitioning, that
is, partitioning without and with attribute replication. As seen, greater cost re-
duction can be obtained when allowing replication but in exchange to increased

14

computation time.

w. replication w/o replication
Instance |A| |T | |S| Cost Time (s) Cost Time (s) Ratio
TPC-C v5 92 5 1 0.208 0 0.208 0 -
TPC-C v5 92 5 2 0.133 1 0.207 1 64%
TPC-C v5 92 5 3 0.132 6 0.207 2 64%
TPC-C v5 92 5 4 0.132 33 0.207 3 64%
rndAt4x15 54 15 2 4.855 28 6.799 1 71%
rndAt8x15 105 15 2 4.710 517 5.809 6 81%
rndAt8x15 27 15 2 4.244 4 4.402 0 96%
rndAt16x15 49 15 2 3.410 34 3.852 0 89%

Table 5: Computational results from solving the TPC-C benchmark and a
few random instances with the QP solver. Costs are shown in units of 105.
The table shows that costs can be reduced by allowing attribute replication
and that TPC-C does not benefit noticeably from being partitioned and
distributed to more than two sites. The Ratio column displays the ratio
between the replicated and non-replicated cost.

Table 6 compares two different kinds of partition placements: 1) all partitions
being located at one single site (thereby avoiding inter-site transfers) and 2)
partitions being located at remote sites. These two situations can be simulated
by setting p = 0 and p > 0, respectively. The benefits of local placements are
given by the amount of updates in the workload as only updates cause inter-
site transfers. More updates implies larger costs for remote placements. For
a somewhat extreme case, instance “rndAt8x15u50”, with 50% of the queries
being updates, the costs are about 33% lower when placing the partitions locally.

Local Remote
Instance |A| |T | |S| Cost (QP) Cost (SA) Cost (QP) Cost (SA)
TPC-C v5 92 5 1 1.916 1.916 1.916 1.916
TPC-C v5 92 5 2 1.210 1.208 1.221 1.273
TPC-C v5 92 5 3 1.208 1.208 1.220 1.220
rndAt4x15 54 15 2 4.709 4.742 4.855 4.888
rndAt8x15 105 15 2 4.424 4.808 4.710 5.187
rndAt8x15u50 105 20 2 3.189 3.313 4.778 4.873
rndBt8x15 27 15 2 4.365 4.332 4.244 4.730
rndBt16x15 49 15 2 3.335 3.387 3.410 3.404
rndBt16x15u50 49 20 2 5.066 5.220 5.438 5.438

Table 6: Comparing the costs of local (p = 0) versus remote (p > 0)
location of partitions and with attribute replication allowed. Costs are in
units of 105. Write-rarely instances or instances in class “rndB. . . ” do not
benefit noticeably by placing all partitions locally, even the instances with
50% update queries, however instances in class “rndA. . . ” with a large
update ratio do. The reason is that only updates cause inter-site transfer.
That the costs of the local placement for rndBt8x15 is larger than when
placed remotely is since λ > 0.

15

6 Conclusion

We have constructed a cost model for vertical partitioning of relational OLTP
databases together with a quadratic integer program that distributes both at-
tributes and transactions to a set of sites while allowing attribute replication,
preserving single-sitedness for read queries and in which load balancing vs. total
cost minimization can be prioritized arbitrarily.

We also presented a more scalable heuristic which seems to deliver good re-
sults. For both algorithms we obtained a cost reduction of 37% in our model
of TPC-C and even though random instances theoretically can be constructed
with arbitrary high/low benefits from vertical partitioning, the test runs on
our selected subset of random instances seem to indicate that 1) our heuristic
scales far better than the QP-solver, and 2) it can obtain valuable cost reduc-
tions on many real-world OLTP databases, as we tried to select the parameters
realistically.

One thing we miss, however, is an official OLTP testbed – a library con-
taining realistic OLTP workloads, schemas and statistics. Such a collection of
realistic instances could serve as base for several insteresting and important
studies for understanding the nature and characteristics of OLTP databases.

Acknowledgements

The author would like to acknowledge Daniel Abadi for competent and valuable
discussions and feedback. Also, Rasmus Pagh, Philippe Bonnet and Laurent
Flindt Muller have been very helpful with insightful comments on preliminary
versions of the paper.

16

References

[1] R. Agarwal, C. Aggarwal, and V. Prasad. A tree projection algorithm
for generation of frequent item sets. Journal of Parallel and Distributed
Computing, Jan 2001.

[2] S Agrawal, V Narasayya, and B Yang. Integrating vertical and horizontal
partitioning into automated physical database design. Proceedings of the
2004 ACM SIGMOD international . . . , Jan 2004.

[3] S. Chakravarthy, J. Muthuraj, and R. Varadarajan. An objective function
for vertically partitioning relations in distributed databases and its
Distributed and parallel databases, Jan 1994.

[4] W. Chu and I. Ieong. A transaction-based approach to vertical partitioning
forrelational database systems. IEEE Transactions on Software Engineer-
ing, Jan 1993.

[5] Douglas W. Cornell and Philip S. Yu. An effective approach to vertical
partitioning for physical design of relational databases. IEEE Trans. Softw.
Eng., 16(2):248–258, 1990. ISSN 0098-5589.

[6] M. Eisner. Mathematical techniques for efficient record segmentation in
large shared databases. Journal of the Assoclauon for Computing Machin-
ery, Jan 1976.

[7] P. L. Hammer and S. Rudeanu. Boolean Methods in Operations Research
and Related Areas. Springer Verlag, 1968. ISBN 0-387-04291-1.

[8] A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall
Advanced REference Series, Englewood Cliffs, NJ, 1988.

[9] W. McCormick Jr, P. Schweitzer, and T. White. Problem decomposition
and data reorganization by a clustering technique. Operations Research,
Jan 1972.

[10] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,
Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden,
Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi. H-
store: a high-performance, distributed main memory transaction processing
system. Proc. VLDB Endow., 1(2):1496–1499, 2008.

[11] Katta G. Marty and Joaquim Judice. On the complexity of finding sta-
tionary points of nonconvex quadratic programs. Opsearch, 33(3):162–166,
1996.

[12] S Menon. Allocating fragments in distributed databases. IEEE transactions
on parallel and distributed systems, Jan 2005.

[13] Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. Ver-
tical partitioning algorithms for database design. ACM Trans. Database
Syst., 9(4):680–710, December 1984. ISSN 0362-5915.

17

[14] Shamkant B. Navathe and Mingyoung Ra. Vertical partitioning for
database design: a graphical algorithm. SIGMOD Rec., 18(2):440–450,
1989. ISSN 0163-5808.

[15] D Sacca and G Wiederhold. Database partitioning in a cluster of processors.
ACM Transactions on Database Systems (TODS), Jan 1985.

[16] Rathindra Sarathy, Bala Shetty, and Arun Sen. A constrained nonlinear
0-1 program for data allocation. European Journal of Operational Research,
102(3):626–647, November 1997.

[17] J. Son and M. Kim. An adaptable vertical partitioning method in dis-
tributed systems. The Journal of Systems & Software, Jan 2004.

[18] Michael Stonebraker, Samuel R. Madden, Daniel J. Abadi, Stavros Hari-
zopoulos, Nabil Hachem, and Pat Helland. The end of an architectural era
(it’s time for a complete rewrite). In VLDB, Vienna, Austria, 2007.

[19] Laurence A. Wolsey. Integer Programming. Wiley-Interscience, 1998. ISBN
0-471-28366-5.

18

A Latency

This section describes how to extend the algorithms to also estimate costs of
network latency for queries accessing attributes on remote sites. We assume,
that all remote access (if any) for queries are done in parallel and with a constant
number of requests per query per remote site. Let pl denote a latency penalty
factor and introduce a new binary variable ψq for each query q indicating with
ψq = 1 if q accesses any remotely placed attributes. Letting n denote the
number of remotely accessed attributes by q we have n > 0 ⇒ ψq = 1 and
n = 0⇒ ψq = 0, or equivalently (ψq − 1)n = 0 and ψq − n ≤ 0. This results in
the following two classes of new constraints:

(ψq − 1)
∑

a,s

fqδqαa,qγq,t(1 − xt,s)ya,s = 0 , ∀q, t

and
ψq −

∑

a,s

fqδqαa,qγq,t(1 − xt,s)ya,s ≤ 0 , ∀q, t

The total latency in a given partitioning can now be estimated by the sum
pl

∑
q ψq which can be added to the cost objective function (4).

19

