Vertical partitioning of relational OLTP databases
using integer programming

Rasmus Resen Amossen

IT University of Copenhagen
Rued Langaardsvej 7
2300 Kbh. S, Denmark

rasmus@resen.org

Abstract— A way to optimize performance of relational row
store databases is to reduce the row widths by vertically partition-
ing tables into table fractions in order to minimize the number of
irrelevant columns/attributes read by each transaction. This pa-
per considers vertical partitioning algorithms for relational row-
store OLTP databases with an H-store-like architecture, meaning
that we would like to maximize the number of single-sited
transactions. We present a model for the vertical partitioning
problem that, given a schema together with a vertical partitioning
and a workload, estimates the costs (bytes read/written by storage
layer access methods and bytes transferred between sites) of
evaluating the workload on the given partitioning. The cost model
allows for arbitrarily prioritizing load balancing of sites vs. total
cost minimization. We show that finding a minimum-cost vertical
partitioning in this model is NP-hard and therefore the problem
should obviously not be solved manually by a human DBA.
We present two algorithms returning solutions in which single-
sitedness of read queries is preserved while allowing column
replication (which may allow a drastically reduced cost compared
to disjoint partitioning). The first algorithm is a quadratic integer
program that finds optimal minimum-cost solutions with respect
to the model, and the second algorithm is a more scalable
heuristic based on simulated annealing. Experiments show that
the algorithms can reduce the cost of the model objective by
37% when applied to the TPC-C benchmark and the heuristic
is shown to obtain solutions with costs close to the ones found
using the quadratic program.

I. INTRODUCTION

In this paper we consider OLTP databases with an H-store
[12] like architecture in which we would aim for maximizing
the number of single-sited transactions (i.e. transactions that
can be run to completion on a single site). The full version of
the paper can be found in [3]. Given a database schema and
a workload we would like to reduce the cost of evaluating
the workload. In row-stores, where each row is stored as a
contiguous segment and access is done in quantums of whole
rows, a significant amount of superfluous columns/attributes
(we will use the term attribute in the following) are likely
to be accessed during evaluation of a workload. It is easy
to see that this superfluous data access may have a negative
impact on performance so in an optimal world the amount
of data accessed by each query should be minimized. One
approach to this is to perform a vertical partitioning of the
tables in the schema. A vertical partitioning is a, possibly
non-disjoint, distribution of attributes and transactions onto
multiple physical or logical sites. (Notice, that vertical and

horizontal partitioning are not mutually exclusive and can
perfectly be used together). The optimality of a vertical parti-
tioning depends on the context: OLAP applications with lots of
many-row aggregates will likely benefit from parallelizing the
transactions on multiple sites and exchanging small sub-results
between the sites after the aggregations. OLTP applications
on the other hand, with many short-lived transactions, no
many-row aggregates and with few or no few-row aggregates
would likely benefit from gathering all attributes read by a
query locally on the same site: inter-site transfers and the
synchronization mechanisms needed for non-single-sited or
parallel queries (e.g. undo and redo logs) are assumed to
be bottlenecks in situations with short transaction durations.
Stonebraker et al. [12] and Kallman et al. [8] discuss the
benefits of single-sitedness in high-throughput OLTP databases
in more details.

This paper presents a cost model together with two algo-
rithms that find either optimal or close-to-optimal vertical par-
titionings with respect to the cost model. The two algorithms
are based on quadratic programming and simulated annealing,
respectively. For a given partitioning and a workload, the cost
model estimates the number of bytes read/written by access
methods in the storage layer and the amount of data transfer
between sites. Our model is made with a specific setting in
mind, captured by five headlines:

OLTP The database is a transaction processing system with
many short lived transactions.

Aggregates No many-row aggregates and few (or no) aggre-
gates on small row-subsets.

Preserve single-sitedness We should try to avoid breaking
single-sitedness as a large number of single-sited transactions
will reduce the need for inter-site transfers and completely
eliminate the need for undo and redo logs for these queries if
the partitioning is performed on an H-store like DMBS [12].
Workload known Transactions used in the workload to-
gether with some run-time statistics are assumed to be known
when applying the algorithms.

Furthermore, following the consensus in the related work (see
Section I-C) we simplify the model by not considering time
spent on network latency (if all vertical partitions are placed
locally on a single site, then time spend on network latency is
trivially zero anyway). A description of how to include latency
in the model at the expense of increased complexity can be

found in the appendix.

A. Outline of approach

The basic idea is as follows. We are given an input in form
of a schema together with a workload in which queries are
grouped into transactions, and each query is described by a
set of statistical properties.

For each query ¢ in the workload and for each table r
accessed by ¢ the input provides the average number n, of
rows from table r that is retrieved from or written to storage
by query q. Together with the width w, of each attribute a
from table r this generally gives a good estimate for how much
attribute a costs in retrievals/writes by access methods for each
evaluation of query ¢, namely Wé}q = w, - n,.. Notice, that w,
may be an average in cases with variable-length attributes.

Given a set of sites, the challenge is now to find a non-
disjoint distribution of all attributes, and a disjoint distribution
of transactions to these sites so that the costs of retrievals,
writes and inter-site transfers, each defined in terms of W(;q
as explained in details below, is minimized. This means, that
the primary executing site of any given query is assumed to
be the site that hosts the transaction holding that query.

As mentioned above, our algorithms will not break single-
sitedness for read queries and therefore no additional costs
are added to the execution of read queries by applying this
algorithm. In contrast, since the storage costs (the sum of
retrieval, write and inter-site transfer costs) for a query is
minimized and each tuple become as narrow as possible, the
total costs of evaluating the queries (e.g. processing joins,
handling intermediate subresults, etc.) are assumed to be, if
not minimized, then reduced too.

B. Contributions
This work contributes with the following:

e an algorithm optimized for H-store like architectures,
preserving single-sitedness for read queries and in which
load balance among sites versus minimization of total
costs can be prioritized arbitrarily,

o a more scalable heuristic, and

¢ amicro benchmark of a) both algorithms based on TPC-C
and a set of random instances, b) a comparison between
the benefits of local versus remote partition location,
and c) a comparison between disjoint and non-disjoint
partitioning.

C. Related work

A lot of work has been done on data allocation and vertical
partitioning but to the best of our knowledge, no work solves
the exact same problem as the present paper: distributing both
transactions and attributes to a set of sites, allowing attribute
replication, preserving single-sitedness for read queries and
prioritizing load balancing vs. total cost minimization. We
therefore order the references below by increasing estimated
problem similarity and do not mention work dedicated on
vertical partitioning of OLAP databases. The full version of
this paper [3] describes some additional related work.

Cornell and Yu [5] generated a non-remote, disjoint parti-
tioning minimizing the amount of disk access by recursively
applying a binary partitioning. The partitioning decisions were
based on an integer program and with strong assumptions on
a System-R like architecture when estimating the amount of
disk access.

Agrawal et al. [2] also constructed a disjoint partitioning
with non-remote partition placement. They used a two-phase
strategy where the first phase generated all relevant attribute
groups using association rules [1] considering only one query
at a time, and the second phase merged the attribute groups
that were useful across queries.

Son and Kim [11] presented an algorithm for generating
disjoint partitioning by either minimizing costs or by ensur-
ing that exactly k£ vertical fragments were produced. Inter-
site transfer costs were not considered. The partitioning was
produced using a bottom-up strategy, iteratively merging two
selected partitions with the best “merge profit” until only one
large super-partition existed. The k-way partitioning was found
at the iteration having exactly k partitions and the lowest-cost
partitioning was found at the iteration with the lowest cost.

Chu and Ieong [4] minimized the amount of disk access by
constructing a non-remote and non-disjoint vertical partition-
ing. Two binary partitioning algorithms based on the branch-
and-bound method were presented with varying complexity
and accuracy. The partitionings were formed by recursively
applying the binary partitioning algorithms on the set of
“reasonable cuts”.

Navathe et al. [10] considered the vertical partitioning
problem for three different environments: a) single site with
one memory level, b) single site with several memory levels,
and c) multiple sites. The partitions could be both disjoint
and non-disjoint. A clustering algorithm grouped attributes
with high affinity by using an attribute affinity matrix together
with a bond energy algorithm [7]. Three basic algorithms
for generating partitions were presented which, depending on
the desired environment, used different prioritization of four
access and transfer cost classes.

D. Outline of paper

In section II we derive a cost model together with a
quadratic program defining the first algorithm. Section III de-
scribes a heuristic based on the cost model found in Section II,
and Section IV discusses a couple of ideas for improvements.
Computational results are shown in Section V.

II. A LINEARIZED QP APPROACH

In this section we develop our base model, a quadratic
program (QP), which will later be extended to handle load
balancing and then linearized in order to solve it using a
conventional mixed integer program (MIP) solver.

A. The base model

In a vertical partitioning for a schema and a workload we
would like to minimize the sum

A+pB)

where A is the amount of data accessed locally in the storage
layer, B is the amount of data needed to be transferred over
the network during query updates and p is a penalty factor.

We assume that each transaction has a primary executing
site. For each transaction ¢ € 7T, each table attribute a € A,
and each site s € S consider two decision variables z; s €
{0,1} and y, s € {0, 1} indicating if transaction ¢ is executed
on site s and if attribute a is located on site s, respectively. All
transactions must be located at exactly one site (their primary
executing site), that is

me:l ,Vse S 2
teT

and all attributes must be located at at least one site, that is

Zya’s >1 ,VsebS.
acA

To determine the size of A and B from equation (1) intro-
duce five new static binary constants describing the database
schema:

e g4 indicates if attribute a itself is accessed by query ¢

o a4 indicates if attribute @ is part of a table that ¢
accesses

e 74, indicates if query ¢ is used in transaction ¢

o 04 indicates if query ¢ is a write query

e (4, indicates if any query in transaction ¢ reads at-
tribute a

Single-sitedness should be maintained for reads. That is, if a

read query in transaction ¢ accesses attribute a then a and ¢
must be co-located:

Tt sPat =1=>Yas=1 ,Vt€eT,acA
or equivalently
Ya,s — Tt,sPa,t > 0 ,Vt € T,a e A

In order to estimate the cost of reading, writing and trans-
ferring data, introduce the following weights:

e w, denotes the average width of attribute a

o f, denotes the frequency of query ¢

e N4, denotes for query ¢ the average number of rows
retrieved from or written to the table holding attribute a

Then the cost of reading or writing a in query ¢ is estimated
to Wy g = Wq - fq - Na,q and the cost of transferring attribute
a over the network is estimated to pW, 4. Notice, that W, 4
is only an estimate due to f; and n, 4.

Consider the amount of local data access, A, and let A =
AR + Ay where Ar and Aw is the amount of read and write
access, respectively. For a given site r and query ¢, Ag is the
sum of all attribute weights W, 4 for which 1) ¢ is a read query,
2) attribute a is stored on r, 3) the transaction that executes
query q is executed on and 4) q accesses any attribute in the
table fraction that holds a. As we maintain single-sitedness
for reads, 34,4 can be used to handle 4), resulting in

Ar = Z Wa,qﬁa,q”)/q,t(l - 6q)xt,sya,s~

a,t,s,q

Accounting for local access of write queries, Aw, is less trivial.
Consider the following three approaches:

Access relevant attributes An attribute a at site s should
be accounted for if and only if there exists an attribute a’ on s
that ¢ updates so that a and «’ are attributes of the same table.
While this accounting is the most accurate of the three it is
also the most expensive as it implies an element of the form
Ya,sYa’,s 10 the objective function which adds an undesirable
amount of |A|?|S| variables and 3|.4|?|S| constraints to the
problem when linearized (see Section II-C).

Access all attributes We can get around the increased
complexity by assuming that write queries ¢ always writes
to all sites containing table fractions of tables accessed by g,
regardless of whether ¢ actually accesses any of the attributes
of the fractions. While this is correct for insert statements
(assuming that inserts always write complete rows) it is likely
an overestimation for updates: imagine a lot of single-attribute
updates on a wide table where the above method would have
split the attribute in question to a separate partition. This
overestimation will imply that the model will partition tables
that are updated often or replicate attributes less often than the
accounting model described above.

Access no attributes Another approach to simplify the cost
function is to completely avoid accounting for local access for
writes and solely let the network transfer define the write costs.
With this underestimation of write costs, attributes will then
tend to be replicated more often than in the first accounting
model.

In this paper we choose the second approach, which gives a
conservative overestimate of the write costs as we then obtain
more accurate costs for inserts and avoid extending the model
with undesirably many variables and constraints. Intuitively
speaking, this choice implies that read queries will tend to
partition the tables for best possible read-performance, and
the write queries will tend to minimize the amount of attribute
replication. We now have

AW = Z Wa,qﬁa,q(sqya,s

q9,a,s

and thus

A= Z Wa,qﬂa,q’}/q,t(l - Jq)xt,sya,s

a,t,s,q

+) WagBagOglas 3

q,a,s

B accounts for the amount of network transfer and since we
enforce single-sitedness for all reads B is solely the sum of
transfer costs for write queries. We assume that write queries
only transfer the attributes they update and does not transfer
to the site that holds their own transaction:

B= Z Wa,qo‘a,q%,t(;q(l - xt,s)ya,s-

a,t,s,q

By noticing that Za,t,s,q Ca.qVqtYas = Za,s,q Oq,qYa,s WE

can construct the minimization problem as

min Zt,a,s c1(a, t)2t,sYa,s + Za,s c2(a)Ya,s
s.t. YosTrs =1 vt
YosVas =1 Va 4)
Ya,s — Tt,sPat = 0 Va,t

€ {0,1} Vit,a,s

Tt ss Ya,s

where

c(a,t) = Z Wa,aVq,t(Bayg(1 = 84) — Pata,qdq)
q

and
ca(a) = Z Wa,q0q(Ba,q + Plta,g).

q

Both ¢; and ¢y are completely induced by the schema, query
workload and statistics and can therefore be considered static
when the partitioning process starts.

B. Adding load balancing

We are interested in extending the model in (4) to also
handle load balancing of the sites instead of just minimizing
the sum of all data access/transfer. From equation (3) define
the work of a single site s € S as

Z C3(a, t)xt,sya,s + Z Cyq (a)ya,s (5)
a,t a

where c3(a,t) = > Wag7VqtBa,q(1 — d¢) and ca(a) =
>-g Wa,qBa,q0¢ Introduce the variable m and for each site
s let the value of (5) be a lower bound for m. Adding m to
the objective function is then equivalent to also minimizing
the work of the maximally loaded site.

In order to decide how to prioritize cost minimization versus
load balancing in the model, introduce a scalar 0 < A\ < 1 and
weight the original cost from (4) and m by A and (1 — X),
respectively. The new objective is then

A Z c1(a, t) Tt sYa,s + A Z c2(a)yqs + (L —=X)m (6)

a,t,s a,s

where m is constrained as follows:

Z c3(a,t) ¢ sYa,s + 264(602/@,3 <m ,¥seS.

a,t a,q

Notice that while we are now minimizing (6), the objective
of (4) should still be considered as the actual cost of a solution.

C. Linerarization

We use the technique discussed in [6, Chapter IV, Theorem
4] to linearize the model. This is done by replacing the
quadratic terms in the model with a variable u; , s and adding
the following new constraints:

Ut,a,s < Tt,s Vt, a,S
Ut,a,s S Ya,s Vt, a,s
Ut,a,s > Tt,s + Ya,s — 1 Vta,s

For w4, > 0 notice that u;,, = 1 if and only if z; , =

Ya,s = 1, and that u;, , is guaranteed to be binary if both

2y and y, s are binary (thus, there is no need for requiring
it explicitly in the model).

Now, the model in (4) extended with load balancing looks
as follows when linearized:

min A Zt’a’s c1(a, t)ug g s
+A Za,s Cg(a)ya,s + (1 —)\)m

s.t. DosTes =1 Vit
Zs Ya,s >1 Va
Ya,s — Tt,sPa,t >0 Va,t
Za,t 03((17 t)ua,t,s (7)
20 Ca(@)Yas <m Vs
ut,a,s - xt,s S 0 Vt7 a,s
ut,a,s - ya,s S 0 Vt7 a,s
Ut,a,s — Lt,s — Ya,s + 1 Z 0 Vt7 a,s
Tis,Ya,s € {0,1} Vit,a,s
Utqs >0 Vt,a, s

D. Complexity

The objective function in quadratic programs can be written
on the form

%ZTQZ’ +cz+d

where in our case z = (z1,1,...,%7),|S[sY1,15-- > L|A],|S]|)
is a vector containing the decision variables,) is a cost
matrix, ¢ is a cost vector and d a constant. () can be easily
defined from (6) by dividing @ into four quadrants, letting the
sub-matrices in the upper-left and lower-right quadrant equal
zero and letting the upper-right and lower-left submatrices
be defined by c¢(a,t). @ is indefinite and the cost function
(6) therefore not convex. As shown by Marty and Judice [9]
finding optimum when @ is indefinite is NP-hard.

III. THE SA SOLVER — A HEURISTIC APPROACH

We develop a heuristic based on simulated annealing (see
[13]) and will refer to it as the SA-solver from now on. The
base idea is to alternately fix = and y and only optimize
the not-fixed vector, thereby simplifying the problem. In each
iteration we search in the neighborhood of the found solution
and accept a worse solution as base for a further search with
decreasing probability.

Let ;5 hold an assignment of transactions to sites and
define the neighborhood z’ of x as a change of location for
a subset of the transactions so that for each ¢ € T we still
have) xi . = 1. Similarly, let y, s hold an assignment
of attributes to sites but define the neighborhood y’ of y as
an extended replication of a subset of the attributes. That is,
for each a € A in that subset we have y, s = 1 = vy,
and > Yy o > D, Ya,s- We found that altering the location
for a constant number of 10% of both transactions/attributes
yielded the best results. The heuristic now looks as pictured
in Algorithm 1. Notice, that the linearization constraints is not
needed since either x or y will be constant in each iteration.
This reduces the size of the problem considerably.

Algorithm 1 The heuristic based on simulated annealing (SA).
It iteratively fixes and y and accepts a worse solution from
the neighborhood with decreasing probability.

1: Initialize temperature 7 > 0 and reduction factor p €]0; 1|
2: Set the number L of inner loops

3: Initialize x randomly so that (2) is satisfied

4: fix + “x”

5: S <« findSolution(fix)

6: while not frozen do

7. forie{l,...,L} do

8: z < neighborhood of x

9: y < neighborhood of y

10: S’ + findSolution(fix)

11: A + cost(S") — cost(S)

12: p < a randomly chosen number in [0; 1]
13: if A <0orp<e?/ then

14: S8

15: end if

16: fix < the element in {“z”,“y”} \ {fix}
17: end for

18: T p-T

19: end while

IV. FURTHER IMPROVEMENTS

Consider a table with n attributes together with two queries:
one accessing attribute 1 through & and one accessing attribute
k through n. Then it is sufficient to find an optimal distribution
for the three attribute groupings {1,...,k — 1}, {k} and
{k + 1,...,n}, considering each group as an atomic unit
and thereby reducing the problem size. In general, it is only
necessary to distribute groups of attributes induced by query
access overlaps. Chu and leong [4] refer to these attribute
overlaps as reasonable cuts. Even though this will not improve
the worst-case complexity, this reduction may still have a large
performance impact on some instances.

Also, assuming that transactions follow the 20/80 rule (20%
of the transactions generate 80% of the load), the problem can
be solved iteratively over T starting with a small set of the
most heavy transactions.

V. COMPUTATIONAL RESULTS

In this section we will briefly cover our computational
results. A more elaborate description, including comparison
tables, can be found in the full version of this paper [3].

We assume that the context is a database with a very high
transaction count like the memory-only database H-store [12]
(now VoltDB'). With a bus bandwith between 32 Gbit/s and
128 Gbit/s, and a PC3 DDR3-SDRAM bandwith of at least
136 Gbit/s, the bus is assumed to be the bottleneck in RAM
accesses. We assume the use of a 10-gigabit network and
therefore set p = 8 in our tests unless otherwise stated.

We furthermore mainly focus on minimizing the total costs
of execution and therefore choose a low A = 0.1 assignment.

Thttp://voltdb.com

We have performed tests on a model of the TPC-C
benchmark? version 5.10.1 and a set of randomly generated
instances. The TPC-C specification describes transactions,
queries and database schema but does not provide the statistics
needed to create a problem instance. In our model of TPC-C
we have therefore tried to construct a set of statistics that seem
realistic.

To the best of our knowledge there is no standard library of
typical OLTP instances with schemas, workloads and statistics
so in order to explore the characteristics of the algorithms
we performed some experiments on a set of randomly gen-
erated instances instead as it showed up to be a considerable
administrative and bureaucratic challenge (if possible at all)
to collect appropriate instances from “real life” databases.
The randomly generated instances vary in several parameters
in order to clarify which characteristics that influence the
potential cost reduction by applying our vertical partitioning
algorithms. The parameters include: number of transactions
in workload, number of tables in schema, maximum number
of attributes per table, maximum number of queries per
transaction, percentage of queries being updates, maximum
number of different tables being referred to from a single
query, maximum number of different attributes being referred
to by a single query, and the set of allowed attribute widths.
We defined classes of problem instances by upper bounds
on all parameters. Individual instances were then generated
by choosing the value of each parameter evenly distributed
between 1 and its upper bound. That is, if e.g. the maximum
allowed number of attributes in tables was k, the number of
table attributes for each table in the generated instance would
be evenly distributed between 1 and k with a mean of & /2.

Our experiments (described in details in [3]) revealed that
the SA solver is generally faster than the QP solver but the
QP solver obtains lower costs when it does not exceed its time
limit. For TPC-C, we obtained a cost reduction of 37% when
applying the algorithms and for the random instances where
we expected to see a reduction, the reduction was between
25% and 85%.

We ran a series of experiments comparing disjoint and
nondisjoint partitioning. A far greater cost reduction could
be obtained when allowing replication but in exchange to
increased computation time.

We also compared local vs. remote partition placements,
modelled by setting p = 0 and p > 0, respectively. The
benefits of local placements are given by the amount of updates
in the workload as only updates cause inter-site transfers. We
saw up to 33% cost reduction in our experiments by placing
partitions locally.

VI. CONCLUSION

We have constructed a cost model for vertical partitioning
of relational OLTP databases together with a quadratic integer
program that distributes both attributes and transactions to a set

Zhttp://www.tpc.org/tpce

of sites while allowing attribute replication, preserving single-
sitedness for read queries and in which load balancing vs.
total cost minimization can be prioritized arbitrarily. We also
presented a more scalable heuristic which seems to deliver
good results. For both algorithms we obtained a cost reduction
of 37% in our model of TPC-C and promising results for
the random instances. Even though the latter theoretically can
be constructed with arbitrary high/low benefits from vertical
partitioning, the test runs on our selected subset of random
instances seem to indicate that 1) our heuristic scales far
better than the QP-solver, and 2) it can obtain valuable cost
reductions on many real-world OLTP databases, as we tried
to select the parameters realistically.

One thing we miss, however, is an official OLTP testbed
— a library containing realistic OLTP workloads, schemas
and statistics. Such a collection of realistic instances could
serve as base for several insteresting and important studies
for understanding the nature and characteristics of OLTP
databases.

ACKNOWLEDGEMENTS

The author would like to acknowledge Daniel Abadi for
competent and valuable discussions and feedback. Also, Ras-
mus Pagh, Philippe Bonnet and Laurent Flindt Muller have
been very helpful with insightful comments on preliminary
versions of the paper.

REFERENCES

[1] R. Agarwal, C. Aggarwal, and V. Prasad. A tree pro-
jection algorithm for generation of frequent item sets.
Journal of Parallel and Distributed Computing, Jan 2001.

[2] S Agrawal, V Narasayya, and B Yang. Integrating ver-
tical and horizontal partitioning into automated physical
database design. Proceedings of the 2004 ACM SIGMOD
international ..., Jan 2004.

[3] Rasmus Resen Amossen. Vertical partitioning
of relational oltp databases wusing integer
programming. 2009. doi: arXiv:0911.1691. URL

http://arxiv.org/abs/0911.1691.

[4] W. Chu and I. Teong. A transaction-based approach to
vertical partitioning forrelational database systems. /IEEE
Transactions on Software Engineering, Jan 1993.

[5] Douglas W. Cornell and Philip S. Yu. An effective
approach to vertical partitioning for physical design of
relational databases. IEEE Trans. Softw. Eng., 16(2):248—
258, 1990. ISSN 0098-5589.

[6] P. L. Hammer and S. Rudeanu. Boolean Methods in
Operations Research and Related Areas. Springer Verlag,
1968. ISBN 0-387-04291-1.

[7]1 W. McCormick Jr, P. Schweitzer, and T. White. Problem
decomposition and data reorganization by a clustering
technique. Operations Research, Jan 1972.

[8] Robert Kallman, Hideaki Kimura, Jonathan Natkins,
Andrew Pavlo, Alexander Rasin, Stanley Zdonik, Evan
P. C. Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. H-store: a

high-performance, distributed main memory transaction
processing system. Proc. VLDB Endow., 1(2):1496—
1499, 2008.
[9] Katta G. Marty and Joaquim Judice. On the complex-
ity of finding stationary points of nonconvex quadratic
programs. Opsearch, 33(3):162-166, 1996.
Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and
Jinglie Dou. Vertical partitioning algorithms for database
design. ACM Trans. Database Syst., 9(4):680-710,
December 1984. ISSN 0362-5915.
J. Son and M. Kim. An adaptable vertical partitioning
method in distributed systems. The Journal of Systems
& Software, Jan 2004.
Michael Stonebraker, Samuel R. Madden, Daniel J.
Abadi, Stavros Harizopoulos, Nabil Hachem, and Pat
Helland. The end of an architectural era (it’s time for
a complete rewrite). In VLDB, Vienna, Austria, 2007.
Laurence A. Wolsey. Integer Programming. Wiley-
Interscience, 1998. ISBN 0-471-28366-5.

(10]

(11]

[12]

(13]

APPENDIX

This section describes how to extend the algorithms to
also estimate costs of network latency for queries accessing
attributes on remote sites. We assume, that all remote access
(if any) for queries are done in parallel and with a constant
number of requests per query per remote site. Let p; denote
a latency penalty factor and introduce a new binary variable
14 for each query ¢ indicating with ¢, = 1 if ¢ accesses any
remotely placed attributes. Letting n denote the number of
remotely accessed attributes by ¢ we have n > 0 = ¢, =1
and n = 0 = ¢4 = 0, or equivalently (¢ — 1)n = 0 and
g —n < 0. This results in the following two classes of new
constraints:

(g = 1) q0tagas(l = Tt.s)Yas =0 Va,t

and
Z/Jq - Z 5qaa,q7q,t(1 - xt,s)ya,s S 0 7an t
a,s
The total latency in a given partitioning can now be estimated

by the sum p; Zq fqq which can be added to the cost
objective function (4).

