
A New Data Layout For Set Intersection on GPUs

Rasmus Resen Amossen and Rasmus Pagh
IT University of Copenhagen, Denmark

Email: {resen,pagh}@itu.dk

Abstract—Set intersection is the core in a variety of prob-
lems, e.g. frequent itemset mining and sparse boolean matrix
multiplication. It is well-known that large speed gains can, for
some computational problems, be obtained by using a graphics
processing unit (GPU) as a massively parallel computing
device. However, GPUs require highly regular control flow
and memory access patterns, and for this reason previous
GPU methods for intersecting sets have used a simple bitmap
representation. This representation requires excessive space on
sparse data sets. In this paper we present a novel data layout,
BATMAP, that is particularly well suited for parallel processing,
and is compact even for sparse data.

Frequent itemset mining is one of the most important
applications of set intersection. As a case-study on the potential
of BATMAPs we focus on frequent pair mining, which is a core
special case of frequent itemset mining. The main finding is
that our method is able to achieve speedups over both Apriori
and FP-growth when the number of distinct items is large,
and the density of the problem instance is above 1%. Previous
implementations of frequent itemset mining on GPU have not
been able to show speedups over the best single-threaded
implementations.

Keywords-Set intersection; Frequent itemset mining; Sparse
boolean matrix multiplication; Data layout; GPU

I. INTRODUCTION

Graphics processing units (GPUs) are currently the tech-
nology that gives the largest computing power per dollar
(measured in floating-point operations per second). Devel-
oping algorithms for GPU computation is challenging, since
the architecture imposes many requirements on the way
algorithms work, if the potential is to be fully utilized.
In particular, programs need to be structured in identical
threads with as little conditional code as possible (i.e.,
having regular control flow), such that all threads can run the
same instruction at the same time. Also, the memory access
pattern of threads that execute together needs to be highly
regular to approach the theoretical bandwidth of the GPU
memory. For computation intensive tasks the availability of
hundreds of processing units has resulted in large speedups
compared to CPU computation (see e.g. the survey [20]).
Even for data intensive tasks such as sorting, advantage over
CPU computation has been demonstrated (see e.g. [13], [15],
[17]).

Many computational problems depend on being able to
perform set intersection efficiently. For example:
• in boolean matrix multiplication of two matrices, M

and M ′, we want to find all pairs (i, j) for which ∃k :

Mi,kM
′
k,j > 0, or equivalently for Ai = {j|Mi,j > 0}

and Bj = {i|M ′i,j > 0}, the pairs (i, j) for which
Ai ∩Bj 6= ∅

• in a database context we might ask for a join-project
of two tables, i.e., a join of two tables followed by a
duplicate eliminating projection that projects away the
join attribute. This is equivalent to sparse boolean ma-
trix multiplication [2], and thus dependent on efficient
set intersection as well

• frequent itemset mining asks, given a set of transactions
T1, . . . , Tm, where Ti ⊆ {1, . . . , n}, to report all sets
S ⊂ {1, . . . , n} having support at least s in the
transactions. The support of S is defined as the number
of transactions that have S as a subset. The special case
where itemsets are limited to size two (where only item
pairs are found) is also the core problem when larger
itemsets are allowed, and frequent itemset mining in
general therefore reduces to efficient set intersection

• all conjuctive queries can be thought of as set inter-
sections: given a dataset D, and two pre-processed
subsets of data, f, g : D → {0, 1}|D|, the conjuctive
query {d ∈ D|f(d) ∧ g(d)} is exactly equivalent to an
intersection.

In this paper we consider the general problem of intersect-
ing sets. However, we use frequent itemset mining as a case
study throughout the text, as it is one of the most studied
problems that can be solved by reduction to multiple set
intersections. We furthermore focus on itemsets of size two
(frequent pair mining), since this special case already has
many applications (such as finding binary associations) and
is highly challenging when there are many frequent items.
At the end of the paper we outline how our approach could
be generalized to deal with larger itemsets.

Set representations in frequent itemset mining: There
are two principal ways of representing a set of transactions.
In the standard horizontal format the transactions are stored
one by one (possibly sorted), whereas the vertical format
stores, for each item i, the set Si of indices of transactions
that contain i. This set is sometimes referred to as the tidlist
of i. Observe that finding the support of {i, j} is simply a
matter of computing |Si ∩ Sj |. If Si and Sj are stored in
sorted order it is an easy task to do this in timeO(|Si|+|Sj |).
If the number of distinct items n is large we see that it is easy
to parallelize the computation of all support counts: simply
distribute the intersections among the processors such that

each processor is responsible for support counts involving a
small number of items.

For some data sets (especially sparse ones) it may be faster
to use a horizontal layout and maintain a data structure that
counts the occurrences of all pairs. Then the time spent on
a pair {i, j} is proportional to the support of {i, j} rather
than to the sum of support of {i} and {j}. However, this
approach may use excessive space when there are many pairs
of frequent items. In parallel and distributed settings the high
space usage translates into either using an expensive shared
memory, or a phase where the support counts from different
parts of the transactions are combined. In either case, the
communication among processes becomes a bottleneck as
the number of frequent items grows.

A. This paper

Theoretical contribution: We present a new data format
for sets, BATMAP, that is especially well-suited for parallel
and pipelined computation. It is instructive to compare our
format to bitmaps, which have previously been used to store
the sets Si, using one bit per transaction [11]. To compute
the support of {i, j} one needs to perform the bit-wise AND
of the bitmaps encoding Si and Sj , and count the number
of 1s. This task parallelizes very well, as the bitmaps can
be split into any desired number of pieces to be processed
individually, and there is a low communication overhead in
combining the counts. It is also very friendly to modern
pipelined processor architectures, since no conditional code
is needed, avoiding the branch mispredictions that have
haunted previous frequent itemset mining algorithms using
“vertical data formats” and set intersections [23]. Finally,
since data can be accessed sequentially, bitmaps make opti-
mal use of cache and prefetching.

The BATMAP maintains these advantages, while being
more space-efficient on sparse sets. The space usage is in
fact within a small factor of the information theoretical
minimum for representing sets of a given size, which is
the largest imaginable compression. That is, if Si and Sj

are represented using batmaps Bi and Bj we can compute
the size of Si ∩Sj using a word-by-word comparison of Bi

and Bj . In contrast to normal compressed representations of
sparse bitmaps, the steps of this computation are completely
fixed, and parallelize immediately. The name BATMAP
indicates the similarity to the functionality of a bitmap, and
suggests that this is something that Bruce Wayne might use
to mine associations between criminals and crimes.

We should mention a limitation of batmaps compared
to bitmaps: the result of combining two batmaps is not
a batmap, so it cannot directly support the intersection of
more than two sets. Towards the end of the paper we outline
possible ways of dealing with this limitation.

Experiments: In Section IV we investigate the per-
formance characteristics of our algorithm (on GPU), and
CPU implementations of Apriori [1] and FP-growth [14] for

varying density and number of distinct items. We find that
our algorithm scales well in the number of distinct items,
in terms of both computation time and memory usage. In
addition, the algorithm performs well for dense instances.

The throughput of batmap intersection on GPU is found
to be about 5 times larger than when running the algorithm
on the 8 CPU cores on our system. We also perform
experiments comparing batmaps on GPU with merging of
sorted lists, a standard CPU-based algorithm for computing
intersection size.

B. Previous work

1) Set intersection: The algorithm for intersecting two
sorted lists is folklore. In the literature it has been extended
in two main directions. The first is adaptive intersection pro-
cedures, that use fewer comparisons when there are compact
witnesses for the intersection, see e.g. [9]. In the worst case,
and in the average case, these algorithms provide no speedup
over the classical algorithm. Second, for dense sets there
has been considerable work on compressed representations,
usually referred to as compressed bitmaps. The density of
a set is its size divided by the size of the universe from
which its elements come (e.g., in the case of frequent
itemset mining, the density of Si is |Si|/m). Previous work
on high-performance compressed bitmap formats include
Boncz [31], BBC [16] and WAH [27]. These methods all
require data to be decoded sequentially, and provide no easy
parallelization.

Bille et al. [3] present a compressed bitmap format that
is nearly optimal wrt. the amount of data read to compute
set operations. However, this is mainly a theoretical result
that is not likely to perform well in a GPU setting. Our new
vertical data layout can be viewed as a kind of compressed
bitmap, with special properties.

2) Frequent itemset mining: To ease the exposition we
will assume that we have preprocessed the data set to remove
items with support below the threshold we are interested in.
All existing frequent itemset methods do this, in one way or
another, so the interesting comparison is for the case where
there are only frequent items.

GPU computation: The previous work most closely
related to ours is that of Fang et al. [11]. They use (in the
PBI-GPU algorithm) a bitmap to store a vertical representa-
tion of the data set. This means that the representation of a
data set of m transactions with n distinct items requires
mn bits of space. For a sparse data set with a total of
mb items, where b � n, this can be much more than
the log

(
mn
mb

)
≈ mb log(n/b) bits needed to represent the

data. Experiments in [11], on hardware similar to what we
use, show that their GPU/bitmap is more than 1 order of
magnitude faster than a tuned implementation of the Apriori
algorithm in some cases where the data set is dense (density
49%). For a sparse data set (density 0.6%) there is basically
no speedup. So both from a space usage and a computation

time perspective this method does not work well for sparse
data sets. Based on the experimental results on the synthetic
dataset T40I10D100K reported in [11] we can estimate the
speed of the underlying set intersections to be around 40
Gbit per second. In the case of T40I10D100K, which has a
density of 4%, this means that they can in 1 second intersect
sets of total size around 1.6·109. Sets with lower density take
proportionally longer per item, and sets with larger density
take proportionally less time.

We also note that [11] did not present experiments show-
ing that a GPU implementation can be faster than FP-
growth [14] (in fact, in all three experiments reported, FP-
growth was considerably faster).

CPU computation: A lot of work has been devoted to
parallel and distributed implementations of frequent pattern
mining. The survey of Zaki [30] describes the state-of-the-
art as of 1999. More recent work has focused on multi-
core architectures of modern commodity hardware, trying to
optimize cache performance and minimize the overhead of
access to shared data [12], [18]. However, GPU parallelism
involves many constraints on the structure of the code and
memory access pattern that is not addressed in these works.
In particular, our method exploits the massive SIMD paral-
lelism that is available on GPUs, and we find it conceivable
that the set representation we describe could lead to other
advances in parallel and distributed computation.

II. BATMAPS

Let Si denote the set of transactions containing item i.
We wish to preprocess the sets Si ⊆ {1, . . . ,m} such that
we can quickly compute the intersection sizes |Si ∩ Sj | for
all item pairs {i, j}. A standard solution to this problem is
to store the sets as sorted lists, which allows an intersection
to be computed in time O(|Si| + |Sj |) by simple merging.
However, the control flow for this intersection procedure
is unpredictable, which makes it work poorly on modern
architectures, in particular GPUs, since they require highly
structured control flow to perform well.

The initial idea is to rely on hashing rather than compar-
isons. If we organize the sets in hash tables (say, using linear
probing or perfect hashing) it is indeed fast to determine the
common elements of two sets Si, Sj as we simply look up all
elements from Si in Sj . Using perfect hashing (perhaps with
vectorization [4]) the control flow becomes deterministic and
predictable. However, the memory access pattern of hash
table lookups remains random and highly irregular.

Our new approach starts with an old idea from parallel and
distributed data structures [10], [24], [26], applied in a novel
way. The idea is to store sets redundantly to enable more
efficient parallel/distributed operations. More specifically,
we consider the case where an element x can only be stored
in the memory locations given by 2d − 1 random hash
functions (applied to x). By storing an element in d out
of the 2d−1 possible locations, we get that for any two sets

Figure 1. Computing the common elements in two batmaps is done using
pairwise comparisons. For the sake of the illustration we have drawn each
batmap as an array. For batmaps of the same size, we simply need to
compare elements at the same position (top). For batmaps of different sizes,
each entry in the smaller batmap needs to be compared to several entries
in the larger batmap (bottom).

xz y

z xy
y xz

Figure 2. Example of a 2-of-3 assignment for the set S = {x, y, z}. Each
element has one possible position in each of the three hash tables. Two of
these (where the element is underlined) are used to store the element.

both containing x there is at least one position that contains
x in both representations. This means that it suffices to do
a data independent element-by-element comparison which
parallelizes very well (see top part of Figure 1).

Our adaptation: We will consider d = 2 and store each
element x ∈ Si in two of three hash tables. For the time
being we will simply think of these hash tables as a 3 × r
array A(i) (section III describes the specific layout we use).
In each hash table t ∈ {1, 2, 3} there is exactly one position
(t, h

(i)
t (x)) where x may be stored, given by the hash

function h
(i)
t . There is a probability that the arrangement

of values in the hash tables, as illustrated in Figure 2, is not
possible. We discuss this probability in Section II-B, and for
the sake of the discussion we temporarily assume that the
arrangement is always possible.

It will be important that all sets are stored according to the
same hash functions h1, h2, h3, with range scaled according
to the size of the set. That is, given hash functions h1, h2,
h3, we let h(i)t (x) = ht(x) mod ri, where ri = O(|Si|)
is a power of two to be specified later. Since we choose
ranges that are powers of 2, observe that for ri < rj
we have h

(i)
t (x) = h

(j)
t (x) mod ri. This means that if

x ∈ Sj is stored in (1, p1) and (2, p2) it suffices to check
positions (1, p1 mod ri) and (2, p2 mod ri) to determine
if x ∈ Si. Below, we explain how this principle can be used
to efficiently count the number of items in Si ∩Sj . We will
return to the issue of constructing the representation later.

Suppose that x ∈ Si ∩ Sj . Then, because we have
stored x redundantly in the hash tables there exists at
least one t for which A

(i)
t [h

(i)
t (x)] = A

(j)
t [h

(j)
t (x)]. For

x0
x1

x0
x1

x1

x0

Figure 3. The three possible 2-of-3 assignments with respect to a single
element x. Along with each occurrence is the bit that tells whether this
occurence is before or after the other occurrence in the circular order of
rows. When counting the common elements in two data structures we use
this information to only count the last occurrence, in case the data structures
store an item x in the same two positions. This is accomplished by a logical
OR of the associated bits.

now we assume that ri = rj = r, which means that
h
(i)
t = h

(j)
t for all t. Now, by making all equality checks

of the form “A(i)
t [p] == A

(j)
t [p]”, where t ∈ {1, 2, 3} and

p ∈ {0, . . . , r−1}, we can identify each element in Si∩Sj .
These comparisons, illustrated in Figure 1, parallelize very
well. However, to count the number of elements in the
intersection, an additional trick is needed. We can impose a
cyclic order to the three hash tables, such that h1 is followed
by h2, h2 is followed by h3, and h3 is followed by h1.
Then for an occurrence of x in a hash table it makes sense
to ask whether the other occurrence of x is in the hash
table is before or after (it will be in exactly one of these).
We use a single bit per position p in the hash tables to
store this information, denoted b

(i)
t [p]. Consider a pair of

items {i, j}, and a position (t, p) in their batmaps (assumed
to be of the same size). In order to only count exactly
once a transaction x where both items appears, we use the
condition (A

(i)
t [p] = A

(j)
t [p])∧(b(i)t [p]∨b(j)t [p]) to determine

if the elements in position p are overlapping and should be
counted. See Figure 3 for an illustration. It is easy to check
that in both the case where an element x is stored in the same
two hash tables in both batmaps, and the case where there is
only one overlapping occurrence, x is counted exactly once.
We will see later that there will be positions p in each of
A

(i)
t that contain no element from Si — in these positions

we simply set A(i)
t [p] = ⊥ and b

(j)
t [p] = 0 to ensure that

no counting is done. Here ⊥ is a NULL value that is not in
any set Si.

For the general case, since ri divides rj , each position
in A(i) corresponds to rj/ri positions in A(j) as explained
above. That is, we can again count the number of elements
in Si∩Sj by comparing each position in A(j) with a position
in A(i) (see Figure 1).

Compression: Since our method is based on hashing
we can use a compression scheme that stores each item

relative to the set of items with the same hash value (see
section III-A for details). This gives a significant space
saving for dense sets: in our implementation each hash table
entry uses just 8 bits, including b(i)t [p], whenever the density
of a set is above 2−8.

A. Data structure construction

We employ an insertion procedure that generalizes cuckoo
hashing [21] (which places elements in 1 of 2 possible
positions). The idea is to push elements around until an
element is placed in a vacant position (with content ⊥).
An insertion of x starts by putting x in A1, kicking out
any element that might reside in A1[h1(x)], making it
nestless. In case there is a nestless key, it is inserted in
A2 in the same fashion, and so on using the circular order
1, 2, 3, 1, 2, 3, If the number of element moves exceeds
a threshold MaxLoop the procedure returns the element that
is currently nestless (our analysis below shows that this is
a small probability event). The pseudo code is as follows
(where ↔ is used to denote the swapping of two variable
values).

function INSERT(τ)
loop MaxLoop times
τ ↔ A1[h1(τ)]
if τ = ⊥ then return ⊥
τ ↔ A2[h2(τ)]
if τ = ⊥ then return ⊥
τ ↔ A3[h3(τ)]
if τ = ⊥ then return ⊥

end loop
return τ

end

Since we need two occurrences of each element x, the
insert procedure is called twice for each element. In case one
of these insertions fails, we delete any occurrences of x and
re-insert the nestless element returned (unless it happens to
be identical to x). In the Analysis section below we bound
the probability of insertions to fail. While this probability
is low for a single set, failed insertions are likely to occur
when handling many sets. We describe how we handle failed
insertions in Section III-C.

B. Analysis

Suppose we have a data structure for a set S, with hash
functions of range r. We now consider what might happen
when we insert an element x1 using the insert procedure.
Possibly, a single copy of x1 has already been inserted in
the hash table. All other elements exist in exactly two copies.
When moving an element it may happen that it is moved to
the location of the other copy of that element. In this case the
other copy is then moved to the third location, which must
contain a different element. We consider the transcript of the
insertion, which is the sequence of values of the variable τ

from the INSERT() function after each element move upon
insertion of x1.

We first look at the possibility that each copy of an
element appears only once in this sequence, i.e., that each
element appears at most twice. Then each prefix of the
transcript has the form xd1

1 , x
d2
2 , . . . , x

dk

k , where x1, . . . , xk
are distinct and d1, . . . , dk ∈ {1, 2} (number of copies that
we move). Each such sequence appears with probability
r1−k, since we have a hash collision between xi and xi+1

for i = 1, . . . , k − 1, and each such collision happens
independently with probability at most 1/r. Taking the union
bound over all choices for x2, . . . , xk and d1, . . . , dk we get
an upper bound on the probability that a transcript prefix of
length k occurs:

2knk−1r1−k = 2 (2n/r)k−1.

The next case to consider is when the transcript involves
the same copy of an item more than once (a loop). Then it
is not hard to realize that the insert procedure will move a
prefix of the elements in the transcript back to their original
positions, and eventually have τ = x1 again. Then x1 is
pushed to a new table, and we again have two cases to
consider.

1) The transcript does not again return to an element
copy that appeared previously. Consider a prefix of
the transcript of length k′. Then at least one of the
two substrings of the transcript of length k = bk′/3c
that start with x1 will have no repeated element copies.
We can bound the probability of such a transcript in
the same way as above:

2knk−1r1−k = 2(2n/r)k−1 ≤ 2(2n/r)k
′/3−2.

2) The transcript returns once again to a previously
visited element copy (a second loop). Let k denote
the number of distinct elements encountered. The
number of transcripts starting with x1 is then at most
2kk2nk−1, where the k2 factor is an upper bound on
the number of ways the two loops can be formed.
There are k + 1 independent hash collisions for such
a transcript, so each has probability r−k−1, and by a
union bound we see that this is an unlikely event when
r ≥ (2 + ε)n:

2kk2nk−1r−k−1 = (2n/r)kk2/(nr).

Notice that the insertion may fail only in the last case. Using
the assumption that r ≥ (2 + ε)n we see that this happens
for some k with probability at most

n∑
k=1

(2n/r)kk2/(nr)

≤ (nr)−1
n∑

k=1

k2(1 + ε/2)−k

= O((ε3nr)−1).

h1 h2 h3

h1 h2 h3 h1 h2 h3 h1 h2 h3 · · ·

Figure 4. Organization of the three hash functions for B0 (top) and Bi

(bottom) where |B0| = 3r0. Each ht above represents r0 batmap elements
covered by that hash function.

Here, we have bounded the sum by computing the integral
wrt. k from 0 to ∞.

When the insertion succeeds, we see that the proba-
bility that it goes on for k′ steps or more is bounded
by 2(2n/r)k

′/3−2. Thus, the expected number of steps is
bounded by

∞∑
k′=1

2(2n/r)k
′/3−2

≤
∞∑

k′=1

(1 + ε/2)−k
′/3+2

= O(1/ε).

Thus, by choosing ε > 0 as a constant, the expected time
for performing all insertions is O(n).

III. IMPLEMENTATION

The implementation is split into two parts: code for
execution at the GPU, and the pre- and postprocessing on
the host system (CPU).

A. Layout of data structures

Our actual implementation differs a bit from the abstract
description in Section II. We compress the data so that only
8 bits are used per batmap element, while still being able to
handle densities larger than 2−8. Define three permutations,
πt : {1, . . . ,m} → {1, . . . ,m} for t ∈ {1, 2, 3}, let as
earlier ri denote the domain size of the hash functions for
batmap Bi, and define the hash functions h(i)t by

h
(i)
t (x) = |B0|

⌊
πt(x) mod ri

r0

⌋
+ (πt(x) mod r0) + (t− 1)r0.

The batmap layout induced by these hash functions is
illustrated in Figure 4. An important observation is now,
that instead of storing element x at position h(i)t (x) we could
just as well store πt(x) at that position—the result of the
element-wise comparisons between two batmaps would be
the same. Next, by definition of h(i)t the position of πt(x)
(the stored representation of x) in a batmap uniquely iden-
tifies the least significant bits in πt(x), so explicitly storing
these can be considered superfluous. Therefore, instead of
storing x we will only store the 7 most significant bits of
πt(x). That is, πt(x) can now be deduced from the position
and the 7 bits stored in that position. Furthermore, we use

1 additional bit per batmap element to store the indicator
bit b(i)t [p] described in Section II, and organize the bits so
the indicator bit is the most significant of the 8 bits. This
compression gives us 4 elements per 32-bit integer.

To get an idea of the efficiency of this compression
scheme, assume that we have to shift s bits to the right in
order to move the 7 most significant bits down to the least
significant bits. Then log(m+1)− s ≤ 7, and consequently
2s ≥ (m + 1)/128. Also, as each element’s position in a
batmap should uniquely identify the least significant s bits of
h
(i)
t all hash domains must be at least of size ri ≥ 2s for this

compression to work. If we compare to the uncompressed
case with hash domain sizes of 2 · 2dlog(|Si|)e ≈ 2|Si|, we
only obtain an actual compression (space reduction) when
the input is sufficiently dense, i.e. where the set size is
satisfying 2|Si| ≥ 2s, or equivalently |Si| ≥ (m+ 1)/256.

In the GPU, the actual comparisons are done in chunks
of 32-bit integers (4 batmap elements at a time) in a way
that completely avoids conditional statements: let x and y
denote two 32-bit integers, and for convenience, let the 7
least significant bits in each 8-bit block be referred to as the
element bits as they refer to a batmap element. If ⊕ denotes
a logical XOR and “(· · ·)16” means hexadecimal notation
then

p = ((x⊕ y) ∨ (80808080)16)− (01010101)16

gives a 0 (not 1) in the indicator bits iff the corresponding
element bits of x and y are equal. To negate these bits, and
only count a match if one of the corresponding indicator bits
is set, define

p′ = (p⊕ (ffffffff)16) ∧ ((x ∨ y) ∧ (80808080)16).

We then account for ((p′ � 7) + (p′ � 15) + (p′ � 23) +
(p′ � 31))∧7 matches among the 2×4 elements represented
by x and y. Here, � denotes the shift operator as usual.

B. Our adaption of the GPU execution model

The execution model in GPUs and OpenCL can roughly
be outlined as follows: a kernel is a set of instructions to
be evalutated on a set of cores in a multiprocessor, and
a thread running such a kernel is in OpenCL referred to
as a work item. These work items can be organized in a
one, two or three dimensional grid of size W1 ×W2 ×W3,
also referred to as a work group, and each running kernel
instance can retrieve its coordinate (local index) in this grid.
Also, we define the global data size as a multiplum of the
work group size G1W1 ×G2W2 ×G3W3. When executing
the kernel, work groups are generated by iterating over the
global size, i.e. a total of G1G2G3 work groups are formed.
As with the local index, each kernel instance can retrieve
its work groups’ current global coordinate (global index)
in this iteration process. As an example, consider a kernel
that processes a two-dimensional 3200× 3200 pixels image
in chunks of 16 × 16 tiles. This would correspond to a

work group size of 16 × 16 threads, a global data size of
3200×3200, and consequently 200·200 = 4000 work group
positions in the global data.

OpenCL operates with multiple memory spaces, but here
we will only refer to two of these: the most plentiful memory
space, global memory, is the only memory space accessible
from the host device (the CPU), and it has the largest
latency among all the memory spaces. The low-latency
shared memory resides closer to each compute unit, it is
relatively small (e.g. around 16 kb), and is shared among
all the threads in a work group. One of the most important
considerations when implementing efficient algorithms for
execution at GPUs is coalescing global memory accesses,
and we achieve this by following best practice as described
in [19]. In short, global memory access by threads of a half
warp (16 threads) are coalesced by the device in as few as
one transaction when certain access requirements are met,
e.g. if the 16 threads access a 64 bytes aligned segment,
corresponding to 16 32-bit integers.

We adapt the GPU execution model to the ideas described
in Section II and III-A in the following way: a list containing
all n batmaps is transferred once to the device, and we then
define the global size to be n × n, and the work groups
to be of size 16 × 16. Consequently, a total of n2 batmap
comparisons will be made, in chunks of size 16. The thread
with local index (li, lj) and global index (gi, gj) will now
handle the comparisson of batmap B16gi+li and B16gj+lj

in turns of 16 integers (holding 64 batmap elements): each
of the 256 threads in the work group first copies two single
items from the input, which resides in global memory, into
two small 16 × 16 integer arrays in shared memory. Each
row in these small arrays correspond to a 16 integer wide
slice of batmap B16gi to B16gi+15, and B16gj to B16gj+15,
respectively. Because of coalescing, this copying is very
efficient. Second, after synchronising the threads with a
memory barrier, the 16-item wide batmap slices are now
compared as described above, and the process is repeated
with another copying from global to shared memory. This
continues until all slices of the relevant batmaps have been
compared.

C. Pre- and post processing

As the batmap comparisons are performed in the GPU
in quantums of 2 times 16 consecutive batmaps the com-
putation time of each such 16-block will be determined
by the longest of these batmaps. Therefore, as a first step,
we sort the batmaps by increasing width (corresponding to
sorting the sets Si by size), resulting in a strongly reduced
computation time for the subresults for narrow batmaps.
That is, after sorting we have |Bi| ≤ |Bj | for i < j.

Many graphics devices have a few-second hard limit on
the execution time when the device is also used to support
the display. Therefore, we break the GPU calculation into
smaller parts of size k × k where k, in our experiments,

typically had a value of 2048. Let Zp,q be a matrix holding
the subresults for batmaps Bpk to Bpk+k−1 and Bqk to
Bqk+k−1. The division into smaller sub problems now has
the convenient side effect that we, due to symmetry, only
need to compute Zp,q for p ≤ q, thereby cutting almost half
of the GPU computation time, from n2 to around

(
n
2

)
.

Failed insertions: As there is a positive probability that
some of the cuckoo insertions will fail due to collisions with
previously inserted elements we need to handle these failed
insertions separately. Let Fb be the set of items i for which
insertion of value b in batmap Bi failed, and let Ab denote
all items in input associated with b. For all transactions b, we
construct the pairs (min(a, c),max(a, c)) for which a ∈ Fb

and c ∈ Ab, and store each pair in a set Mp,q where (p, q) =
(bmin(a, c)/kc, bmax(a, c)/kc). Whenever a subresult Zp,q

is returned from GPU we extend it with the pairs found
in Mp,q before reporting the number of pairs found. (For
p = q, only the upper triangle of Zp,q is reported because
of symmetry.)

IV. EXPERIMENTS

Hardware setup: All experiments were run on a
MacPro with two Intel Xeon 5462, 2.8 GHz, 4-core CPUs
and 6 GB RAM (bus speed 1.6 GHz), running Mac OS X
10.6. The machine had a GeForce GTX 285 graphics card
with 1 GB RAM and 30 1.4 GHz cores having 8 computation
units each. We observe that the two Xeon chips (combined)
and the GPU have a similar complexity, with a total of
1.6 and 1.4 billion transistors, respectively1. However, the
price of the 2 CPUs is significantly higher than that of the
GPU (the factor is around 5 based on Intel’s initial price for
Xeon 5462, but this ratio has likely decreased somewhat).
A specified indicator of the maximal energy consumption
(TDP) is 2× 80 W for the Xeon CPUs, and 204 W for the
GPU, so the energy consumption at full utilization is likely
to be similar.

A. Frequent pair mining

In this section we report on experiments on frequent
pair mining. Readers who are primarily interested in the
raw performance of set intersections may skip ahead to the
paragraph Throughput computation.

We have implemented frequent pair mining with batmaps
in Python, using the PyOpenCL interface to OpenCL. Even
though it is would be possible to parallelize individual set
intersection computations, we have chosen to focus on the
case where the number of items is large, such that it suffices
to run the different intersections in parallel. The output of
our algorithm is the support of every pair of items.

We will compare our algorithm with Apriori [1], [5],
[6] and FP-growth [7], [14]—both implemented by Chris-
tian Borgelt. Some experiments on Eclat [29] were also

1Manufacturer’s specification.

0 10 20 30 40 50 60 70 80 90 100 110 120 130
#Distinct items in thousands

0

2

4

6

8

M
em

or
y

us
ag

e
in

 G
B

GPU
Apriori
FP-growth

Figure 5. Memory usage for varying number of distinct items n, while
holding the instance size at a constant 10 million items with an item density
of 5%. Apriori scales poorly with n.

performed but it was significantly slower than the other
three implementations and has therefore been left out of
the graphs. Even though other implementations have been
reported to be faster in some cases (e.g. [22], [25]), we found
that the implementations available in the FIMI repository
did not compile with recent versions of gcc. Thus, we
have settled for Borgelt’s implementations, that are generally
regarded as state-of-the-art, as witnessed by a total of 35
citations in 2008-2010. Each test run had a hard limit of
1800 CPU seconds before it was cancelled.

The first set of experiments illustrate the behavior of the
three algorithms when keeping the instance size constant
and varying either the number of distinct items or the item
density. An instance was generated by, for each transaction,
including each of the n distinct items with probability p, and
continue adding transactions until the desired total instance
size was reached.

Figure 5 depicts the memory usage for the three algo-
rithms for varying number of distinct items n. The space
usage of the GPU implementation comes from the prepro-
cessing, which is done on the CPU. We did not attempt to
optimize the space usage of our preprocessing procedure, so
it is likely that significant savings could be obtained by a
space-aware implementation. From the plot we se that while
both FP-growth and the GPU implementation scale well
with n, Apriori has quadratic memory usage and exceeds
the 6 GB RAM for less than 64,000 items.

Figure 6 compares the pure pair generation times for
varying number of distinct items, but keeping the data
size fixed. This is the part of all three methods that has
super-linear complexity, so focusing on this allows us to
see the asymptotic behavior more clearly. Not surprisingly
n = 64, 000 is an upper bound on what can be run with
Apriori within the time limit, due to memory trashing. As
expected, FP-growth exhibits linear growth in time usage

0 10 20 30 40 50 60 70 80 90 100 110 120 130
#Distinct items in thousands

0

200

400

600

800

1000

1200

C
om

pu
ta

tio
n

tim
e

in
 s

ec
on

ds

GPU
Apriori
FP-growth

>1800>1800

Figure 6. Computation times on pure pair generation for varying number
of distinct items, while holding the instance size at a constant 10 million
items with an item density of 5%. Both Apriori and FP-growth exceeds
their time limit on 1800 seconds when solving the n = 64, 000 instance.
In comparison, the GPU implementation scales well in n.

0 10 20 30 40 50 60 70 80 90 100 110 120 130
#Distinct items in thousands

0

200

400

600

800

1000

1200

C
om

pu
ta

tio
n

tim
e

in
 s

ec
on

ds

GPU
Apriori
FP-growth

>1800 >1800

Figure 7. Total computation times, including pre- and postprocessing
for varying number of distinct items, while holding the instance size at a
constant 10 million items with an item density of 5%. The preprocessing
time for the GPU implementation is high, but scales well in n.

as the number of items increases. The GPU algorithm has
space and time usage that grows linearly with the number of
distinct items, but is more than 1 order of magnitude faster
than FP-growth (on a single core).

Figure 7 shows the total execution times including pre-
and postprocessing. Our implementation suffers from high
preprocessing times, partly due to our choice of Python
(which is interpreted) as language. Still, our implementation
outperforms Apriori and FP-growth for large n. According
to a popular benchmark [8], Python executes between 2 and
106 times slower than GNU C++ with a median of 49.
We therefore believe that an optimized implementation of
the preprocessing in C would achieve at least 1 order of
magnitude speedup compared to our simple Python imple-
mentation.

We tested the behavior of the algorithms for varying

0.001 0.01 0.1
Item probability (density)

10

100

1000

C
om

pu
ta

tio
n

tim
e

in
 s

ec
on

ds

GPU
Apriori
FP-growth

Figure 8. Computation times on pure pair generation for varying item
density, while holding the instance size and number of distinct items
constant at 10 million and 8000, respectively.

1 2 3 4 5 6 7 8
Number of computation units

1

2

3

4

5

6

7

8

R
el

at
iv

e
sp

ee
du

p

Theoretical
Apriori
FP-growth

Figure 9. The relative speed-up vs. the number of computation cores. The
theoretical speed-up is linear, but neither the implementation of Apriori nor
FP-growth were benefitting noticably from more than four cores.

item densities, and the results can be seen in Figure 8.
While both Apriori and FP-growth have difficulties handling
dense instances, our GPU implementation uses time almost
independent of density. It can be noticed that for low
densities the GPU time actually increases. This is due to
the lower bound on space requirement for our compression
scheme as described in Section III-A.

In Figure 9 we try to illustrate how Apriori and FP-
growth might scale to a larger number of computation
cores. Our experiments was based on an instance of size
10 million items, 4000 distinct items, and a density of 5%.
In a test simulating parallel execution on i cores, we split
the original instance into i smaller instances of identical
size. We compare the maximum execution times of test
runs for i ∈ {1, 2, 4, 8}. As seen in the figure, none of the
algorithms benefit noticeably from more than four cores.
This is consistent with previous work which also finds that
Apriori scales poorly on many processors [28].

0 5000 10000 15000 20000 25000
Prefix size

0

200

400

600

800

1000

1200

1400

1600

C
om

pu
ta

tio
n

tim
e

in
 s

ec
on

ds

GPU
Apriori
FP-growth

>1800, trashing >1800

Figure 10. Computation time for pure pair generation for increasing prefix
sizes of the WebDocs instance. The number of distinct items increases
rapidly which explains why the computation time for Apriori explodes for
small prefixes. None of the algorithms could solve a prefix of size 51,200
within the 1800 seconds time limit, and the memory usage of helper data
structures for the GPU implementation exceeded the 6 GB RAM available.

The last experiment, seen in Figure 10, compares the
algorithm performances on a “real-life” data set, WebDocs,
which associates web documents and words. The data
set was taken from the Frequent Itemset Mining Dataset
Repository2. As WebDocs is an enormous instance we run
several tests on prefixes of varying size. The number of
distinct items in this instance increases rapidly so all three
algorithms are challenged. As seen, Apriori exceeds the
time limit first due to memory trashing. The GPU algorithm
solves the largest instance: a 25.600 line prefix.

Throughput computation: The number of items pro-
cessed by the GPU for a pair mining run can be estimated
as follows. Consider the experiment with n = 4000 distinct
items, a total instance size of 107, and p = 5%. Sets in
this instance have average size 107/4000 = 2500, which
means that each batmap is 3 · 2dlog(2·2500)e = 3 · 213 bytes
wide. Thus the combined input size to all set intersections
is 40002 · 3 · 213 bytes. The experiment used 10.87 seconds
on the GPU and thus we processed 36.2 Gbyte per second.
The memory bandwidth on the GPU, however, is around
159 Gbyte per second so we are a factor of over 4 from the
theoretical maximum memory throughput.

To get an idea of the performance on GPU relative
to the performance of an equivalent implementation on
CPU, we performed the following experiment: two arrays
of 5,000,000 32 bit integers were created, element-wise
comparison using the counting technique described in Sec-
tion III-A was performed 300 times, and the total execution
time was measured. The size of the arrays was chosen to
measure the performance on non-cache-resident data. The
implementation was written in C, and compiled with gcc

2http://fimi.cs.helsinki.fi/data/

1 2 3 4 5 6 7 8
Number of CPU cores

0

1

2

3

4

5

6

7

G
by

te
 p

er
 s

ec
on

d

Throughput

Figure 11. Memory throughput of CPU comparison of batmaps (size 20
Mbyte). The CPU encounters a memory bottleneck when using 4 cores,
and the throughput never exceeds 7.6 Gbyte per second which is almost a
factor 5 slower than the GPU.

with optimization level O3.
Figure 11 shows the average processing speed using 1, 2,

4, and 8 simultaneous CPU cores. Section III-B described
how the GPU implementation divides the complete problem
in 16 × 16 tiles, and for each such tile, copies elements
from global to shared memory. In the CPU implementation
we ignore the cost of these memory operations. Still, the
processing speed of the CPU never exceeds 7.6 Gbyte per
second. This is almost a factor 5 slower than the 36.2 Gbyte
per second obtained on the GPU.

B. Comparison with merging

A widely used representation of sets, that allows efficient
computation of intersections, is sorted lists. A simple for-
loop can be used to report all common elements, by scanning
both lists. Even though this algorithm is extremely simple, it
runs slowly on modern CPUs due to branch mispredictions.

To compare batmaps on GPU with CPU implementations
based on merging, we first compute the number of set
elements processed per second in the experiment reported
above. The total input size (in terms of number of set
elements) to all set intersections is 40002 · 2500 = 40 · 109.
Thus, we processed 3.68 ·109 elements per second, which is
typical for intersections of this size. Due to rounding of the
size of hash tables, batmaps of the same size would be able
to accommodate up to 63% more elements, which would
give a maximal processing speed of 6 · 109 elements per
second. On the other hand, if the rounding works against
us, the processing speed would be only half of this.

We performed an experiment in which we counted the
number of identical elements in two sorted arrays of 224 inte-
gers (32 bits each), repeated 100 times. The implementation
was written in C, and compiled with gcc with optimization
level O3. Doing one such run took 14.89 seconds (on one
core), which means that 2.25 · 108 elements are handled per

second. This is 13–26 times slower than the processing speed
on the GPU.

To compare against a parallel implementation, we did 8 si-
multaneous runs (using 8 cores), which took 15.66 seconds.
Since the time did not grow noticeably, we conclude that the
computation does not (yet) have a memory bottleneck. The
number of set elements processed per second using 8 cores is
1.71 ·109, or 29–57% of the throughput of the GPU batmap
computed above. This means that performance is noticeably
poorer on the CPUs than on the far less expensive GPU.

V. CONCLUSION

We have shown that a GPU allows set intersection and
frequent pair mining that extends to much larger number of
items than previous algorithms. Further, we believe that our
approach may be pushed further with careful tuning, as we
are still far from using the full memory bandwidth of the
GPU. Our techniques may open up for new applications of
e.g. association mining where there are tens of thousands of
variables (e.g. genetic data).

One problem we leave open is to achieve similar results
for intersections of more than two sets. There are two
ways in which our work could possibly be extended: one
is to use a generalization of batmaps that store items in
d out of d + 1 places. This would ensure that itemsets of
size up to d would have at least one position witnessing
their intersection. Another is to use batmaps to count, for
each item in Si1 , how many times this item appears in
Si2 , Si3 , At the end one would need to sum up the
counts for the two occurrences of each item to determine
if the item appeared in all sets.

ACKNOWLEDGEMENT.

We would like to thank Anna Pagh for taking part in
showing theoretical results on our generalization of the
cuckoo hashing insertion procedure, and Kumar Lav for
his participation in initial experiments with the method
described in this paper. Also, thanks to the anonymous
reviewers for numerous useful suggestions. This work was
supported in part by a grant from the Danish National
Research Foundation for the project “Scalable Query Eval-
uation in Relational Database Systems”.

REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proceedings of 20th International
Conference on Very Large Data Bases (VLDB ’94), pages
487–499. Morgan Kaufmann Publishers, 1994.

[2] R. R. Amossen and R. Pagh. Faster join-projects and
sparse matrix multiplications. In Proceedings of the 12th
International Conference on Database Theory (ICDT), pages
121–126. ACM, 2009.

[3] P. Bille, A. Pagh, and R. Pagh. Fast evaluation of union-
intersection expressions. In Proceedings of International
Symposium on Algorithms And Computation (ISAAC), volume
4835 of Lecture Notes in Computer Science, pages 739–750.
Springer, 2007.

[4] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:
Hyper-pipelining query execution. In Proceedings of Con-
ference on Innovative Data Systems Research (CIDR), pages
225–237, 2005.

[5] C. Borgelt. Efficient implementations of apriori and eclat. In
Proceedings of the IEEE ICDM Workshop on Frequent Item-
set Mining Implementations, volume 90 of CEUR Workshop
Proceedings. CEUR-WS.org, 2003.

[6] C. Borgelt. Recursion pruning for the apriori algorithm. In
Proceedings of the IEEE ICDM Workshop on Frequent Item-
set Mining Implementations, volume 126 of CEUR Workshop
Proceedings. CEUR-WS.org, 2004.

[7] C. Borgelt. An implementation of the fp-growth algorithm. In
Proceedings of the 1st international workshop on open source
data mining (OSDM), pages 1–5. ACM, 2005.

[8] Computer language benchmark game.
http://shootout.alioth.debian.org/u32/-
benchmark.php?test=all&lang=all.

[9] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive
set intersections, unions, and differences. In Proceedings of
Symposium on Discrete Algorithms (SODA), pages 743–752,
2000.

[10] M. Dietzfelbinger and F. M. auf der Heide. Simple, efficient
shared memory simulations. In Proceedings of the 5th Annual
ACM Symposium on Parallel Algorithms and Architectures,
pages 110–119. SIGACT and SIGARCH, June 30–July 2,
1993. Extended abstract.

[11] W. Fang, M. Lu, X. Xiao, B. He, and Q. Luo. Frequent
itemset mining on graphics processors. In Proceedings of the
Fifth International Workshop on Data Management on New
Hardware (DaMoN), pages 34–42. ACM, 2009.

[12] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. D.
Nguyen, Y.-K. Chen, and P. Dubey. Cache-conscious frequent
pattern mining on a modern processor. In VLDB, pages 577–
588. ACM, 2005.

[13] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
GPUTerasort: high performance graphics co-processor sorting
for large database management. In Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pages 325–336. ACM, 2006.

[14] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent
patterns without candidate generation: A frequent-pattern tree
approach. Data Min. Knowl. Discov, 8(1):53–87, 2004.

[15] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo,
and P. Sander. Relational joins on graphics processors. In
Proceedings of the ACM SIGMOD international conference
on Management of data, pages 511–524. ACM, 2008.

[16] T. Johnson. Performance measurements of compressed
bitmap indices. In Proceedings of the 25th International
Conference on Very Large Data Bases (VLDB), pages 278–
289. Morgan Kaufmann Publishers Inc., 1999.

[17] N. Leischner, V. Osipov, and P. Sanders. GPU sample sort.
In 24th International Parallel and Distributed Processing
(IPDPS). IEEE, 2010.

[18] E. Li and L. Liu. Optimization of frequent itemset mining on
multiple-core processor. In VLDB, pages 1275–1285. ACM,
2007.

[19] Nvidia opencl best practices guide, 2009.

[20] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. Com-
puter Graphics Forum, 26(1), 2007.

[21] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51:122–144, 2004.

[22] B. Rácz. nonordfp: An FP-growth variation without rebuild-
ing the FP-tree. In Proceedings of the IEEE ICDM Workshop
on Frequent Itemset Mining Implementations, volume 126 of
CEUR Workshop Proceedings. CEUR-WS.org, 2004.

[23] B. Rácz, F. Bodon, and L. Schmidt-Thieme. On benchmark-
ing frequent itemset mining algorithms: from measurement to
analysis. In Proceedings of the 1st international workshop on
open source data mining (OSDM), pages 36–45. ACM, 2005.

[24] L. Stockmeyer and U. Vishkin. Simulation of parallel random
access machines by circuits. SIAM J. Comput., 13(2):409–
422, May 1984.

[25] T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets. In
Proceedings of the IEEE ICDM Workshop on Frequent Item-
set Mining Implementations, volume 126 of CEUR Workshop
Proceedings. CEUR-WS.org, 2004.

[26] E. Upfal and A. Wigderson. How to share memory in a
distributed system. Journal of the ACM, 34(1):116–127, Jan.
1987.

[27] K. Wu, E. J. Otoo, and A. Shoshani. On the performance of
bitmap indices for high cardinality attributes. In Proceedings
of the 30th International Conference on Very Large Data
Bases (VLDB), pages 24–35. Morgan Kaufmann, 2004.

[28] Y. Ye and C.-C. Chiang. A parallel apriori algorithm for
frequent itemsets mining. In SERA, pages 87–94. IEEE
Computer Society, 2006.

[29] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New
algorithms for fast discovery of association rules. 3rd Intl.
Conf. on Knowledge Discovery and Data Mining, 20, 1997.

[30] M. J. Zaki. Parallel and distributed association mining: A
survey. IEEE Concurrency, 7(4):14–25, Oct./Dec. 1999.

[31] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-
scalar RAM-CPU cache compression. In Proceedings of the
22nd International Conference on Data Engineering (ICDE),
page 59. IEEE Computer Society, 2006.

