
Department of Computer Science

University of Copenhagen

Submitted: October 6, 2005

Adviser: David Pisinger

Master thesis for the cand. scient. degree in computer science

Rasmus Resen Amossen

Constructive algorithms and lower bounds

for guillotine cuttable orthogonal bin packing problems

Abstract

The d-dimensional bin packing problem (OBPP-d) is the
problem of finding the minimum number of containers needed
to contain a set of orthogonally packed d-dimensional rectan-
gular boxes. In OBPP-d solvers two subproblems are crucial:
Calculating lower bounds and solving the decision problem
(OPP-d) of determining if a set of boxes can be orthogonally
packed into a single container. This thesis focuses on these
two subproblems with an extra requirement attached: All
packings must be guillotine cuttable. That is, the containers
must be able to be split into n pieces, each holding a box, by
recursively cutting them with face orthogonal cuts.
We present an extension of a framework by Fekete and Schep-
ers for the guillotine cutting requirement, prove that the deci-
sion problem is NP-hard and prove a worst-case performance
for the corresponding OBPP-2. A new type of packing prop-
erty, sticky cutting, is presented and an algorithm for sticky
cuttings based on the framework by Fekete and Schepers is
described. Inspired by the nature of guillotine packings, a new
tree representation eliminating redundancy is presented along
with a proof-of-concept brute-force algorithm for generating
all such trees.

Contents

1 Introduction 1

1.1 Outline . 3

1.2 Contributions . 4

1.3 Graph theoretic terms and results 5

2 Modelling the packing problem 9

2.1 Modelling OPP-d . 9

2.1.1 Properties of packing classes 13

2.2 Solving OPP-d . 17

2.2.1 P1, P2, P3 in practice 18

2.2.2 Box- and edge similarities 20

2.2.3 The algorithm . 22

2.2.4 Remarks about performance 25

3 The guillotine restriction 27

3.1 Performance . 29

3.2 Characteristics of guillotine cuts 31

3.2.1 Ensuring the guillotine property 33

3.2.2 P2: Handling xi-infeasibility 33

3.2.3 P1 and P3 . 38

3.3 Tree representation . 39

3.3.1 A short survey . 40

3.3.2 Packing trees . 42

i

ii Contents

3.3.3 A brute-force algorithm 45

4 Sticky cutting 51

4.1 Performance . 52

4.2 Behavior of sticky cuttings . 54

4.2.1 Further reduction of the search space 56

4.3 The special case d = 2 and k = 2 56

5 Computational results 59

5.1 Strategy . 59

5.1.1 Handpicked instances 60

5.2 Implementation . 61

5.3 Results . 61

5.3.1 Handpicked instances 62

5.3.2 Systematically created instances 63

5.4 Investigating the performance 75

5.4.1 Algorithmic considerations 75

5.4.2 Implementational considerations 76

5.4.3 Remarks . 78

6 Lower bounds 81

6.1 Assembled bounds for d ∈ {1, 2, 3} 82

6.2 Scaling based bounds . 84

6.3 A bound for guillotine packings 89

6.3.1 The master problem 90

6.3.2 The pricing problem 93

6.3.3 A CSP algorithm for OPP-2 94

6.3.4 Remarks on the bounds 95

7 Solving OBPP-d 97

8 Conclusion 99

8.1 Further work . 100

Bibliography 103

List of Figures

1.1 Illustration of basic graph definitions 5

1.2 Transitive orientations . 7

2.1 Gapless packing and its corresponding interval graphs 10

2.2 Construction of a packing . 13

2.3 Ordering of a transitive orientation 14

2.4 Illustration for proof of lemma 2.7 15

2.5 Illustrations for theorem 2.8. 16

2.6 Examples of 2-chordless graphs 17

2.7 Examples of augmentation . 19

2.8 Indistinguishable boxes and edges 21

2.9 Indistinguishability and search spaces 22

3.1 Example of guillotine cutable packings 28

3.2 Blocked rings . 29

3.3 G4-structure showing OPTg ≥ 2 31

3.4 Connected components in first-stage guillotine cut 32

3.5 Permutation of cut directions 33

3.6 Dissolving a packing class . 34

3.7 Nonunique resolvement . 36

3.8 Ambiguous dissolvement based graph representation 37

3.9 Different topologies using MC and MD 38

3.10 Violation of P1 . 39

iii

iv List of figures

3.11 Reverse polish representation of tree 41

3.12 Examples of packing trees . 44

3.13 λ bounds for trees . 46

3.14 Trees represented by a (λ1, . . . , λk) tuple 46

4.1 Example of sticky cuttings . 52

4.2 Instance transformation used in proof of lemma 4.2 53

4.3 Sticky cutting transformation requiring 3 containers 54

5.1 Results, handpicked, d = 2 . 62

5.2 Results, handpicked, d = 3 . 62

5.3 Results, guillotine solvers, hash vs. static, d = 2 (graphs) . . . 65

5.4 Results, guillotine solvers, hash vs. static, d = 2 (table) 66

5.5 Results, sticky solvers, hash vs. static, d = 2 (graphs) 67

5.6 Results, sticky solvers, hash vs. static, d = 2 (table) 68

5.7 Results, guillotine solver, d = 3 and d = 4 70

5.8 CSP versus dissolvement based solver (graphs) 72

5.9 CSP versus dissolvement based solver (table) 73

5.10 Results, sticky solver, d = 3 and d = 4 74

5.11 gprof output for the guillotine solver (hash) 76

5.12 gprof output for the sticky cutting solver (hash) 77

5.13 gprof output for the guillotine solver (static) 78

5.14 gprof output for the sticky solver (static) 78

6.1 Intervals used in Lα and Lβ 82

6.2 Intervals used in L2 . 83

6.3 Example of u(k) . 86

6.4 Dantzig-Wolfe decomposable models 91

1 Chapter 1

Introduction

In the following we consider the problem of packing d-dimensional boxes
into d-dimensional containers. Let therefore V be a set of boxes and let
w : V → R+

0
d

be a size function describing the width of each box in all
dimensions x1, x2, . . . , xd. All containers are restricted to have the same size

W ∈ R+
0

d
. Now we can loosely define a feasible packing as an arrangement

of the boxes V into one or more containers so that no boxes overlap and no
box exceed the boundaries of the container in which it is placed. Rotations
are not allowed and box edges must be parallel to container edges.

Several problems can be formulated from the task of packing boxes into
containers. Some essential ones include:

Orthogonal Packing Problem (OPP-d) Given a set of boxes V , can V
be packed into a single container of size W ? OPP-d is NP-hard [FS97a].

Orthogonal Bin Packing Problem (OBPP-d) Given the set V , how few
containers of size W is required for packing all the boxes in V ? Since
OPP-d is the corresponding decision problem for OBPP-d and OPP-d
is NP-hard also OBPP-d is NP-hard.

Orthogonal Knapsack Problem (OKP-d) Given a single container of
size W and a value function v : V → R+

0 , choose a subset V ′ ⊆ V
that can be packed into the container so the sum of values for V ′ are
maximized. Again OPP-d is the corresponding decision problem so
OKP-d is NP-hard as well.

This thesis focus on the problems OPP-d and OBPP-d attached with an
extra so called guillotine cutting restriction. In this, a packing is only feasible
if there exist a series of face parallel straight cuts that can recursively cut

1

2 Introduction

the container into |V | pieces so that each piece contains a box and no box
has been intersected.

The OPP-d has been approached in numerous ways. In [MFNK96] Mu-
rata et al. presents a method for representing box placements using sequence
pairs. This representation is later utilized by Pisinger [Pis03] who builds
packings for d = 2 by considering envelopes that cover all boxes placed so
far. In [MPV97] Martello et al. presents an algorithm for d = 3 that uses en-
velopes as well. Pisinger and Sigurd [PS02] presents an algorithm for OPP-2
based on constraint programming (CSP) in which a packing is constructed
by assigning appropriate relations to each pair of boxes u, v ∈ V . This al-
gorithm is also described in section 6.3.3. Martello et al. [MPV04] uses the
CSP technique for the three-dimensional case. All of the above consider the
decision problem for a specific d. A general model for all values of d, based
on graph theory, is presented by Fekete and Schepers in [FS97a]. The model
is relatively complex and introduces the concept of packing isomorphism.
[FS97c] describes a branch-and-bound algorithm based on this model and
both the model and this algorithm is fundamental for this thesis. None of
the above papers deal with packings required to satisfy the guillotine cut-
ting property. This is however done in work by Wong and Liu [WL86] who
model guillotine cuts as a tree structure and represents the tree structure
by normalized polish expressions. Also Christofides and Whitlock [CW77]
uses tree structures to model guillotine cuts. Both [WL86] and [CW77] con-
sider guillotine cuttings from a top-down point of view where different cut
configurations are applied to a container until a cut structure that can hold
all boxes has been found. Where the previous two articles uses a top-down
strategy Wang [Wan83] iteratively assembles the boxes in V in a bottom-up
approach.

As seen, several kinds of algorithms have been published for OPP-d but
primary two methods are used to solve OBPP-d. One is to distribute boxes
into containers with a branch-and-bound algorithm. Such an algorithm is
presented by Martello et al. [MPV97] for OBPP-3 but the framework is
in fact more general: An outer branch-and-bound algorithm assigns boxes
to containers and some inner algorithm solves the OPP-d problem for each
such assignment to test that the boxes fit into the respective containers.
The other method is to formulate the problem as a mixed integer model.
Pisinger and Sigurd [PS02] concern OBPP-2 and use the idea from Dantzig-
Wolfe [DW60] to decompose the model into a restricted master problem and
a number of subproblems. Each of the subproblems is then split again into
a one-dimensional pricing problem and a two-dimensional decision problem.
Notice that both methods contain OPP-d as a subproblem.

1.1 Outline 3

An efficient way of optimizing algorithms for OPP-d and OBPP-d is to
consider lower bounds which can be calculated in polynomial and maybe even
linear time: E.g. if an iteration makes a box assignment to k containers and
a lower bound gives that the assigned boxes require at least k + 1 containers
there are no need to solve the NP-hard OPP-d problem with an exact solver.
Most bounds are based on the same principle of grouping boxes into classes
depending on their size and combining various volume estimations for each
class. Such bounds are presented in [MT90, DM95, MV98] for d = 1, in
[BM03] for d = 2 and in [MPV97] for d = 3. None of these bounds apply to
the general d-dimensional problem. Fekete and Schepers describe in [FS97b,
FS01] a generalized strategy of scaling box sizes by conservative scales and
estimating on the transformed sizes. This generalized idea is described for
arbitrary d.

No polynomial time bound taking the guillotine cutting requirement into
account is, to the best of our knowledge, known. One way of achieving a
lower bound, not polynomial though, for packings with this requirement is
to settle with the LP-relaxation of the solution found by the algorithm by
Pisinger and Sigurd [PS02]. This algorithm is capable of handling both the
guillotine cutting restriction and various other requirements.

1.1 Outline

As mentioned above, every currently known algorithm for OBPP-d consist
of an outer branch-and-bound or column genaration framework that assigns
boxes to containers and an inner sub-algorithm for solving OPP-d for each
container. The performance of all algorithms for the bin packing problem
therefore heavily depends on the performance of the solver used for the de-
cision problem. This thesis will thus focus on OPP-d and more specifically
the graph theory based framework by Fekete and Schepers. Section 1.3 intro-
duces some essential graph theoretic terms and results needed for chapter 2 in
which the model and OPP-d algorithm by Fekete and Schepers are described.

The original framework does not take various packing restrictions, such
as the guillotine cutting requirement, into account. In chapter 3 we examine
how the model behaves if all packings are known to be guillotine cuttable
and describe how the algorithm by Fekete and Schepers can be applied to
problems with this requirement. The chapter also states a worst-case perfor-
mance for the guillotine cuttable OBPP-2 and introduces a new packing tree
representation.

A subset of all guillotine packings behave particularly nice in the graph

4 Introduction

theoretic model: In chapter 4 we introduce the concept of sticky cuttings
and describe how to apply Fekete and Schepers framework to these kind of
restrictions. We also give a conjecture for the worst case performance for the
sticky cuttable OBPP-2 and describe how the idea from sticky cuttings can
be utilized for the special case OPP-2 where the number of stages allowed
for the cutting recursion is limited to 2.

Some of the presented ideas have been implemented and the computa-
tional results obtained are presented in chapter 5.

In chapter 6 we give a survey of various techniques to obtain lower bounds
for OBPP-d. We also describe an algorithm by Pisinger and Sigurd [PS02]
capable of providing a lower bound for problems required to be guillotine
cuttable.

All the previous chapters are coupled in chapter 7 in which a branch-
and-bound algorithm for OBPP-d utilizing both exact solvers for OPP-d and
lower bounds OBPP-d is described.

Chapter 8 contains a conclusion and ideas for further work.

1.2 Contributions

This thesis provides the following contributions:

• The framework by Fekete and Schepers is extended to handle guillotine
cuttings and two versions of the modified algorithm is presented: One
that follows the original framework relatively strictly but ensures the
guillotine property and one in which the guillotine checking extension
is utilized to speed up each iteration.

• A proof for a worst case performance ratio of 2 for the guillotine cut-
table OBPP-2 is given. This proof was made in co-operation with
David Pisinger.

• A whole new type of graph theoretically nice behaving sticky cuttings is
presented and a conjecture is given for a worst case performance ratio
of 4 for the sticky cuttable OBPP-2.

• It is shown how the theory from sticky cuttings can be utilized in
conventional guillotine cuttings for d = 2 if the number of stages is
limited to 2.

1.3 Graph theoretic terms and results 5

• The sticky cutting algorithm and one of the guillotine algorithms have
been implemented. These implementations are the first to solve sticky-
and guillotine cuttings for arbitrarily large d.

• A new packing tree representation of guillotine cuttings is presented.
Packing trees prevent redundant/symmetric representations and is de-
scribed along with a brute-force algorithm that – as a proof-of-concept
– traverse all packing trees.

1.3 Graph theoretic terms and results

The framework presented in the upcoming chapters rely on a set of graph
theoretic definitions and results. These will be briefly explained in this sec-
tion.

Definition 1.1 (Induced subgraph) Let G = (V, E) be a graph. For S ⊆
V we denote by G[S] = (S, E[S]) the by S induced subgraph of G, where
(u, v) ∈ E[S]⇔ u, v ∈ S and (u, v) ∈ E.

a b c d

e f g h

(a)

a
b c

d

a b

cd

(b)

a b

cd

(c)

Figure 1.1: 1.1(a) is a graph with 8 vertices refered to from several
examples attached to the graph definitions. 1.1(b) shows a set of
intervals (above) and the corresponding interval graph (below). The
comparability graph for the interval graph is shown in 1.1(c).

Example 1.2 In figure 1.1(a) the subgraph induced by the node set {c, d, g, h}
is the complete graph k4. 3

6 Introduction

Definition 1.3 (Stable set) For a graph G = (V, E), a set S ⊆ V is called
a stable set of G if the by S induced subgraph of G has no edges.

Example 1.4 The nodes {a, c, f} form a stable set in figure 1.1(a). 3

Definition 1.5 (k-chord) Let C = (v0, v1, . . . , vn = v0) be a cycle. An edge
(vi, vj), i, j ∈ {0, . . . , k − 1} is called a k − chord if (|i − j| mod n) = k
and k > 1. A cycle is called k-chordless if it does not contain a k-chord. A
chordless cycle may also be referred to as a hole.

Example 1.6 Consider figure 1.1(a) and the cycle (a, b, f, e). The edge
(e, b) is a 2-chord in this cycle. 3

Definition 1.7 (Clique, maximal-) For S ⊆ V the induced subgraph G[S]
is called a clique of order |S| if G[S] is complete. A clique G[S] is maximal
if there is no other clique G[S ′] with |S ′| > |S|.

Example 1.8 In figure 1.1(a) the subgraph induced by the nodes {a, b, e}
is a clique but it is not maximal. The clique induced by the set {c, d, g, h} is
maximal. 3

Definition 1.9 (Interval graph) Let I be a set of intervals on R. The
undirected graph G = (V, E) is an interval graph if there is a bijection between
I and V and (u, v) ∈ E ⇔ u ∩ v 6= ∅ for all u, v ∈ I.

Example 1.10 Figure 1.1(b) shows a set of intervals and the corresponding
interval graph. 3

When considering directed graphs, the number of out- and in-going edges
for a node v is often relevant:

Definition 1.11 (In-degree) Let G = (V, E) be a directed graph. Then the
number of in-going edges for a node v is denoted δ−(v). δ−(v) is also referred
to as the in-degree of v.

1.3 Graph theoretic terms and results 7

Later, we need to look at directed versions of undirected graphs satisfying
the so called transitive orientation property :

Definition 1.12 (Transitive orientation) A graph G = (V, E) is said to
satisfy the transitive orientation property if there exists an orientation F of
E such that the following condition holds:

(u, v) ∈ F and (v, w) ∈ F ⇒ (u, w) ∈ F. (1.1)

An undirected graph satisfying (1.1) is also referred to as a comparability
graph.

Figure 1.2 shows two examples of graphs and the transitive orientation prop-
erty.

(a) (b) (c)

Figure 1.2: The graph in 1.2(a) cannot be transitively oriented while
1.2(b) can and may become 1.2(c).

Let E{ denote the complement of E.

Proposition 1.13 (Ghoulia-Houri) Let G = (V, E) be an interval graph.
Then G{ = (V, E{) is a comparability graph. That is, G{ satisfies the transi-
tive orientation property.

Proof Let {Iv}v∈V be an interval representation of G. We need to show
that an orientation of E{ satisfying (1.1) exists. For every edge (u, v) in E{,
Iu and Iv are disjoint, per definition. If Iu ← Iv denotes that Iu lies strictly
to the left of Iv, we can consider the following orientation F of E{: For all
(u, v) ∈ E{ let

(u, v) ∈ F ⇔ Iu ← Iv.

As Iu ← Iv ← Iw ⇒ Iu ← Iw, (1.1) clearly holds. 2

Definition 1.14 (Cocomparability graph) A graph G = (V, E) is called
a cocomparability graph if G{ = (V, E{) is a comparability graph.

8 Introduction

2
Chapter 2

Modelling the packing
problem

Most of the theory behind the constructive algorithms in this thesis relies on
a graph theoretic model developed by Fekete and Schepers [FS97a, FS04]. In
[FS97c] they present a branch-and-bound algorithm for solving OPP-d based
on this model and both the model and algorithm will be described in this
chapter.

Throughout the rest of this text we denote by φi the i’th coordinate of φ
for a map φ with a d dimensional image.

2.1 Modelling OPP-d

We aim to formalize the idea of packings by considering the positions of all
boxes in a Cartesian coordinate system. For that, define the map p : V →

R+
0

d
as the coordinate of the corner closest to the origin of each box. p then

uniquely identifies the box position as no rotations are allowed. Also define

Ii : V → R+
0 × R+

v 7→ [pi(v), pi(v) + wi(v))
(2.1)

as the interval occupied by box v on the xi-axis. With p and I in hand we
can now define a packing formally:

Definition 2.1 (Packing) A feasible packing of the tuple (V, w, W) is a

function p : V → R+
0

d
that satisfies

∀v ∈ V : p(v) + w(v) ≤ W (2.2)

∀u, v ∈ V, u 6= v, ∃i ∈ {1, . . . , d} : Ii(u) ∩ Ii(v) = ∅ (2.3)

9

10 Modelling the packing problem

(2.2) ensures that no box exceeds the container boundaries and (2.3) ensures
that no two boxes overlap. Figure 2.1(a) shows a feasible packing.

If a packing p arranges the boxes so they are either placed at origin or at
the edge of another box we call it gapless. More formally:

Definition 2.2 (Gapless packing) A packing is said to be gapless if for
all i = 1, . . . , d and v ∈ V

pi(v) = 0 or ∃u ∈ V : pi(v) = pi(u) + wi(u)

Interval graphs can be used to represent the map I defined in (2.1). This
is done by constructing an interval graph Gi = (V, Ei) for each dimension
i = 1, . . . , d for the map Ii: Two vertices u and v are connected in Gi if and
only if box u and v is overlapping along the xi-axis. Figure 2.1 illustrates a
packing and the corresponding interval graphs. Notice, that a stable set in
Gi corresponds to a subset of boxes that does not overlap along the xi-axis.
Below we will show that interval graphs can be used to represent packings.

a

b c

d
e

f

b c
a d e

f

b
a

c
e

f
d

x1

x2

(a) A packing and the in-
tervals for each box

G1
a

b

c

d

e

f
G2

a

b

c

d

e

f

(b) The corresponding interval
graphs

Figure 2.1: A gapless packing for d = 2 and the corresponding inter-
val graphs

We call a subset of boxes S ⊆ V for xi-feasible if S can be lined up along
the xi-axis without overlapping and without exceeding the container width.
That is, if

∑

v∈S wi(v) ≤ Wi.

Now, for the graphs Gi = (V, Ei), i = 1, . . . , d, consider the following
three properties. They are crucial for the entire algorithmic part of this the-
sis and are therefore highlighted:

2.1 Modelling OPP-d 11

P1 Each Gi = (V, Ei) is an interval graph

P2 Each stable subset S ⊆ V of Gi is xi-feasible

P3
⋂d

i=1 Ei = ∅

We will now show that satisfying the above three properties is both a neces-
sary and sufficient condition for the graphs G1, . . . , Gd to represent a feasible
packing. For this, we will make use of the term packing class:

Definition 2.3 (Packing class) The tuple E = (E1, . . . , Ed) of edge sets
for a set V of boxes is called a packing class if and only if P1, P2 and P3
are satisfied for all Gi = (V, Ei).

Theorem 2.4 Let p be a packing of the tuple (V, w, W). Then there exists
a packing class E for p.

Proof Our approach is to construct a set of graphs and show that these
satisfy P1, P2 and P3. For i = 1, . . . , d let Gi = (V, Ei) be the interval
graphs induced by the intervals Ii as defined in (2.1). P1 is therefore trivially
satisfied for all Gi. For an arbitrary i, let S ⊆ V be a stable set. Because of
(2.2) and because Gi is an interval graph, the intervals in the stable set S are
disjoint with the rightmost element to the left of Wi. Thus

∑

s∈S wi(s) ≤ Wi

or equivalent: S is xi-feasible. P2 is therefore satisfied. Last, we can rewrite
(2.3) as ∀u, v∃i ∈ {1, . . . , d} : (u, v) /∈ Ei which implies P3. 2

That the converse is also true is shown in theorem 2.5 below. The theorem
makes use of a map pF

i that defines box positions on basis of a transitive
orientation. Let F = (F1, . . . , Fd) be a transitive orientation and for i =
1, . . . , d and v ∈ V , define the map pF

i : V → R+
0 as

v 7→

{

0 if @u ∈ V : (u, v) ∈ Fi

max{pF
i (u) + wi(u)|(u, v) ∈ Fi} else

The map pF : V → R+
0

d
induced by pF

i arranges the boxes in a gapless
packing:

Theorem 2.5 Let E = (E1, . . . , Ed) be a packing class for (V, w, W). Then
there exist a gapless packing p for (V, w, W).

12 Modelling the packing problem

Proof We will show that for any transitive orientation F of E{, the map
pF describes a feasible gapless packing.

First of all, because of P1, Gi = (V, Ei) is an interval graph for all i =
1, . . . , d. So proposition 1.13 on page 7 tells us that G{

i = (V, E{
i) is a

comparability graph and a transitive orientation F therefore always will exist
for E{

i . For such an orientation F we need to show that (2.2) and (2.3) holds
for pF .

To show (2.2) choose an arbitrary v ∈ V and i ∈ {1, . . . , d}. F will then
contain a path, (v(0), . . . , v(r) = v) with δ−(v(0)) = 0 where δ−(v) denotes
the in-degree of v as defined in definition 1.11 on page 6. Because of the
construction of pF we have

pF
i (v) + wi(v) =

r
∑

k=0

wi(v
(k)).

F is a transitive orientation so S = {v(0), . . . , v(r)} induces a clique in GF
i =

(V, F) and therefore also in G{. Thus, S must be a stable set in G. For the
stable set S P2 now gives

∑

u∈S

wi(u) = pF
i (v) + wi(v) ≤ Wi

which proves (2.2) as v ∈ V was arbitrarily chosen.

To prove (2.3) we need to show that there exist some hyper plane sepa-
rating every two boxes u, v ∈ V . So let u, v ∈ V, u 6= v be such two arbitrary
chosen boxes. According to P3 there exists an i with (u, v) /∈ Ei. Per defini-
tion we thus have (u, v) ∈ E{

i . As F is an orientation of E{
i either (u, v) ∈ F

or (v, u) ∈ F . I.e. pF
i (v) ≥ pF

i (u) + w(u) or pF
i (u) ≥ pF

i (v) + w(v). In
either case Ii(u) ∩ Ii(v) = ∅ so u and v can be separated by the hyper plane
orthogonal to xi. This proves (2.3).

That pF is gapless is immediately implied by construction of pF . 2

The intuition behind packings represented as graphs can be explained as
follows: Given a set of d interval graphs we can tell which boxes that overlap
along each axis by looking at an appropriate graph. The complements to the
interval graphs are comparability graphs in which two vertices are connected
if the corresponding boxes does not overlap. Orienting the edges in the com-
parability graphs is equivalent to placing non-overlapping boxes left/right,
above/under or behind/in front of each other. Clearly the orientations must
satisfy the transitive orientation property (definition 1.12 on page 7): If a

2.1 Modelling OPP-d 13

box v1 is strictly to the left of another box v2 and v2 is strictly to the left of
v3 then also v1 must be strictly to the left of v3.

Figure 2.2 shows an example on how a packing can be constructed from a
packing class. In 2.2(c) a transitive orientation is chosen which leads to the
arrangement in 2.2(d). Another transitive orientation of 2.2(c) would lead to
another arrangement and in this way a single packing class represents a whole
equivalence class of arrangements. Notice that a transitive orientation can
be found in O(|V |+ |E|) time [MS97] and thus a packing can be constructed
in linear time in the number of edges. So in order to solve OPP we can search
for a packing class instead of a packing. In section 2.2 we develop a set of
rules to determine whether a set of graphs represents a packing class or not.

G1 a
b

c d

e

G2 a
b

c d

e

(a)

G{
1 a
b

c d

e

G{
2 a
b

c d

e

(b)

F1 a
b

c d

e

F2 a
b

c d

e

(c)

a

b

c

d e
x1

x2

(d)

Figure 2.2: The figure shows the construction of a packing for W =
(11, 10) and V = {a, b, c, d, e} where w(a) = (5, 3), w(b) = (5, 5),
w(c) = (3, 4), w(d) = (3, 4) and w(e) = (3, 3). 2.2(a) shows two
interval graphs representing a packing class. Their complements which
are comparability graphs are shown in 2.2(b). 2.2(c) shows a transitive
orientation F of G. The packing induced by F and pF where F1

determines the relative horizontal positions and F2 the relative vertical
positions is shown in 2.2(d).

2.1.1 Properties of packing classes

As seen above, packing classes are very useful in the OPP context as each
packing class represent a whole set of packings. In this section we will explore
the nature of packing classes and present a set of properties that must be
satisfied in order for an edge set to be a packing class. These properties are

14 Modelling the packing problem

formulated in theorem 2.8 and 2.9. The theorems rely on a number of results,
some of which will be presented in the lemmas below. The first one ensures
the existence of a certain ordering of the vertices in a transitive oriented
complete graph:

Lemma 2.6 Let F be a transitive orientation of a complete graph G =
(V, E) and let δ−(vi) denote the in-degree of vi. Then the vertices in V
can be ordered such that

1. δ−(vi) = i− 1 in F

2. (vi, vj) ∈ F ⇔ i < j

The lemma is a part of theorem 2.4 in [Gol80] which also contains a proof.
We will not cover the proof here but figure 2.3 shows an example of the
lemma in practice.

v1
v2

v3 v4

v5

(a)

v1
v4

v3 v5

v2

(b)

Figure 2.3: 2.3(a) shows a transitive orientation of a complete di-
rected graph. As lemma 2.6 explains, the vertices can be reordered so
δ−(vi) = i − 1 and (vi, vj) ∈ F ⇔ i < j. Such a relabeling is seen in
2.3(b).

The second lemma tells us about edge connections between certain max-
imal cliques:

Lemma 2.7 Let G = (V, E) be a graph without chordless 4-cycles and let
K1 and K2 be maximal cliques. Let F be a transitive orientation of E{. Then
the following holds:

1. F contains an edge connecting K1 and K2

2. All edges that connects K1 and K2 has the same orientation in F

Proof (1) Assume that no edge connects K1 and K2 in F . Then, all
vertices in K1 will be connected with all vertices in K2 in E, which means
that K1 ∪K2 is a clique. This contradicts that K1 and K2 where maximal.

2.1 Modelling OPP-d 15

(2) Assume the opposite: That there exists opposite oriented edges
(a, b) ∈ F and (d, c) ∈ F where a, c ∈ K1 and b, d ∈ K2. If a = c or
b = d the transitive property would imply that (d, b) ∈ F or (c, a) ∈ F resp.
which is not true as (a, c) ∈ E and (b, d) ∈ E. See figure 2.4(a). So assume

(V, F)

a, c

b

d

(a)

(V, F)
a

c

b

d

(b)

Figure 2.4: 2.4(a) The dashed edge shows that two equal vertices
would lead to a contradiction because the edge is in E. 2.4(b) The
dashed edge shows the influence of (d, a) ∈ F .

a, b, c, d are 4 different vertices. Because G has no chordless 4-cycle we have
(a, d) ∈ E{ or (c, b) ∈ E{. Otherwise (a, d, b, c, a) would have been a cycle
in E. Assume that (a, d) ∈ E{. Because of the transitivity in F we have
(a, d) ∈ F ⇒ (a, c) ∈ F and (d, a) ∈ F ⇒ (d, b) ∈ F . See figure 2.4(b). Both
statements are false, so all edges connecting K1 and K2 must have the same
orientation. 2

With lemma 2.6 and 2.7 in hand we are ready to prove the following
theorem which states a set of properties that packing class are guaranteed to
satisfy:

Theorem 2.8 Let G = (V, E) be an undirected graph. Then the following
statements are equivalent:

1. G is an interval graph

2. G{ is a comparability graph and G does not contain a chordless C4 cycle
as an induced subgraph

3. There exists an ordering of the maximal cliques in G such that for all
u ∈ V , the maximal cliques containing v, occur consecutively.

Proof 1 ⇒ 2 In proposition 1.13 on page 7 we showed that G{ is a
comparability graph. So let G = (V, E) be an interval graph and assume that
G indeed has a chordless cycle C = (v0, v1, . . . , vn = v0) with n ≥ 4. For any
k ∈ {0, . . . , n− 2} we have I(vk)∩ I(vk+1) 6= ∅ but I(vk)∩ I(vk+2) = ∅. This

16 Modelling the packing problem

implies that max{I(vk)} < min{I(vk+2)} or min{I(vk)} > max{I(vk+2)},
i.e. the intervals are either strictly increasing or decreasing. Especially we
have I(v0)∩ I(vn−1) = ∅, which contradicts the undirected edge (vn−1, vn) =
(v0, nn−1). Therefore G cannot have a cordless cycle of length 4 or more.

2 ⇒ 3 Let C be the set of all maximal cliques in G and introduce
the relation < where K1 < K2 if and only if ∃(u, v) ∈ F : u ∈ K1, v ∈
K2. According to lemma 2.7 on page 14 there exists edges in F connecting
all cliques and all edges connecting two cliques have the same orientation.
Therefore we have a complete orientation of C , a so called tournament. If we
can show that the orientation of C is transitive then lemma 2.6 on page 14
tells that an ordering on C also exists. So, given three cliques K1, K2 and
K3 assume that K1 < K2 and K2 < K3, i.e. for a ∈ K1, b, c ∈ K2 and
d ∈ K3 we have (a, b) ∈ F and (c, d) ∈ F . See figure 2.5(a). We need to

F

a b

c

d

(a)

E

a b

c

d

(b)

Figure 2.5: Illustrations for theorem 2.8.

show that (a, d) ∈ F . If (a, c) ∈ F or (b, d) ∈ F , also (a, d) ∈ F because
of transitivity of F . So assume this is not the case and that (a, c) ∈ E,
(b, c) ∈ E and (b, d) ∈ E. See figure 2.5(b). E contains no chordless 4-cycle
so (a, d) ∈ E{. The transitivity of F gives us (d, a) ∈ F ⇒ (c, a) ∈ F , so
because (c, a) ∈ E ⇒ (c, a) /∈ E{ we have (a, d) ∈ F . That is, K1 < K3 and
(C , <) therefore describes an ordering of C .

Next, assume that K1, . . . , Kn is ordered so Ki < Kj ⇔ i < j. We need
to show that all cliques containing u ∈ V occur consecutively: Consider Ki <
Kj < Kk and assume there exists u ∈ V where u ∈ Ki, u ∈ Kk but u /∈ Kj.
Because u /∈ Kj there must exist some v ∈ Kj where (u, v) /∈ E, otherwise
all vertices in Kj would be connected to u in E contradicting that Kj was
maximal. So (u, v) ∈ E{. But per definition of < K1 < K2 ⇒ (u, v) ∈ F
and K2 < K3 ⇒ (v, u) ∈ F which is a contradiction. Therefore u ∈ Kj. This
proves 2 ⇒ 3.

3⇒ 1 For v ∈ V , let C (v) be the set of cliques containing v. Regarding
to the ordering of C , C (v) describes an interval on C . We need to show that
(u, v) ∈ E ⇔ C (u) ∩ C (v) 6= ∅. (⇐) : There exists at least one maximal
clique that both u and v is in. Per definition (u, v) ∈ E. (⇒) : As (u, v) ∈ E,
they are both elements the same maximal clique. I.e. C (u) ∩ C (v) 6= ∅. 2

2.2 Solving OPP-d 17

The above theorem tells that a graph is an interval graph if it does not
contain a chordless C4 and if the complement is a comparability graph. To
tell if a graph is a comparability graph the below theorem can be used:

Theorem 2.9 (Ghouilà-Houri 1962, Gilmore and Hoffman 1964)
A graph is a comparability graph if and only if it does not contain a 2-
chordless cycle of odd length.

The proof requires a relatively large toolbox of terms and lemmas and is
therefore omitted here. However, it can be found in e.g. as a part of [Gol80],
theorem 5.27. Figure 2.6 shows examples of graphs with and without 2-
chordless cycles of odd length.

(a) (b) (c) (d) (e)

Figure 2.6: 2.6(a)-2.6(c) are examples of graphs without a 2-chordless
cycle of odd length. They are therefore all comparability graphs. The
2-chordless cycle of odd length is marked with bold in 2.6(d) and 2.6(e)
so neither is a comparability graph.

In order to solve OPP it seems to be a good idea to check for chordless
cycles C4 in G and for 2-chordless cycles of odd length in G{. Section 2.2
will focus on solving OPP-d based on this idea.

2.2 Solving OPP-d

This section will describe a branch-and-bound algorithm developed by Fekete
and Schepers [FS97c] for solving OPP-d based on the properties for packing
classes.

The main idea is to determine if we, given the tuple (V, w, W), can con-
struct a packing class. That is, can d edge sets E1, . . . , Ed be found so that
P1, P2 and P3 are satisfied for all Ei, i = 1, . . . , d? The search for a packing
class will be done through a branch-and-bound algorithm where each branch
corresponds to the action of fixing the existence of a certain edge e. For each
non-leaf node in the search tree there will be two subtrees: The search space
below the first subtree only contains packing classes E in which e ∈ E while

18 Modelling the packing problem

the search space below the second only contains classes E with e /∈ E. This
is done by, in each node N , maintaining two sets EN

− = (EN
−,1, . . . , E

N
−,d) and

EN
+ = (EN

+,1, . . . , E
N
+,d) so that EN

− only contains excluded edges and EN
+ only

included edges. Notice that EN
+ ∩ E

N
− = ∅ at any node and that

EN
+,i ⊆ Ei ⊆ E

N
−,i

{

for all i = 1, . . . , d. The tuple EN = (EN
+ , EN

−) is referred to as the search
information for N and the whole search space for N is written L(EN). For
σ ∈ {−, +}, adding an edge e to Eσ,i is referred to as augmenting Eσ,i. We
will also use the notation (e, σ, i) to describe such an augmentation.

The search will stop if EN
+ is a packing class or if it can be determined that

a packing class cannot be obtained without using some of the excluded edges
in EN

− . In the following, we will look at a single node N and will therefore
omit N in the notation. I.e. EN

+,i will be written E+,i.

2.2.1 P1, P2, P3 in practice

Let us have a closer look at each of the properties P1, P2 and P3 and how
to build a packing class satisfying them. Consider the search information E
for some node N .

P3 is fairly easy to ensure: If e ∈ E+,i for all i 6= k then P3 forces e ∈ E−,k

in order to achieve ∩E+,i = ∅.

Next, P2 requires each stable subset S ⊆ V in Gi = (V, E+,i) to be xi-
feasible. As a stable set S in E+,i is a clique in E{

+,i this is equivalent to

all cliques in E{
+,i being xi-feasible. So if E−,i has an xi-infeasible clique,

no feasible augmentation can be done and the search in the subtree can be
terminated. If E{

+,i contains an xi-infeasible clique, we must therefore at least

add one of its unfixed edges from E{
+,i \ E−,i to E+,i.

P1 requires each Gi = (V, E+,i) to be an interval graph. From theo-
rem 2.8 on page 15 we know that Gi must be a cocomparability graph and
not contain a chordless cycle of length 4. If E+,i contains a chordless 4-cycle
and both chords lies in E−,i, no feasible augmentation can be done. If, how-
ever, only one chord is in E−,i and the other, say e, is in E{

+,i∩E
{
−,i, we should

add e to E+,i. Figure 2.7(a) on the next page illustrates this situation.

Gi = (V, E+,i) was furthermore required to be a cocomparability graph
and thus G{

i = (V, E{
+,i) to be a comparability graph. According to theo-

rem 2.9 on the preceding page G{
i is required to not contain a 2-chordless

cycle of odd length. If (V, E{
+,i) contains an odd 2-chordless cycle, the chords

2.2 Solving OPP-d 19

E+,i a b

cd

E−,i a b

cd

(a)

E+,i a
b

c d

e

E−,i a
b

c d

e

(b)

Figure 2.7: 2.7(a) shows a potential chordless C4 in E+,i. The dashed
edge (a, c) is yet to be fixed. To avoid the chordless C4 we have to fix
(a, c) in E+,i. 2.7(b) shows a potential odd chordless cycle in E {

+,i with
all chords in E+,i and where the dashed edges are yet to be fixed. The
cycle can be avoided in several ways so we branch on every dashed
edge.

must be in E+,i while E{
+,i contains the cycle itself. Adding a cycle edge from

E{
+,i \E−,i to E+,i breaks the cycle in E{

+,i and an infeasible edge set is thereby
avoided. However, the cycle can be broken in several ways (once per un-
fixed edge) so in this situation we branch on every unfixed edge in the cycle.
Figure 2.7(b) illustrates the situation.

To summarize, we have the following properties for a feasible packing:

1. ∩E+,i = ∅. If ∩E+,i 6= ∅ the search information E cannot be augmented
further in a feasible way and the search in that subtree may stop.

2. (V, E+,i) must not contain a chordless 4-cycle. That is, E cannot be
feasible augmented and the subtree may be excluded if E+,i contains a
chordless 4-cycle with both chords in (V, E−,i).

3. (V, E{
+,i) must not contain an odd 2-chordless cycle. Therefore the sub-

tree can be skipped if (V, E−,i) contains an odd 2-chordless cycle with
all chords in E+,i.

4. (V, E{
+,i) must not contain an xi-infeasible clique. If (V, E−,i) contains

such a clique the subtree can be excluded.

Using the above deduced rules for augmentation, we have a rough skeleton
for the branch-and-bound algorithm. But before diving into further details

20 Modelling the packing problem

with the algorithm we will take a look on box- and edge similarities. By con-
sidering the concept of similarity we might be able to improve the algorithm
performance if several similar cases can be handled at once.

2.2.2 Box- and edge similarities

Consider an arrangement of boxes in which two of them are of equal size.
Then it intuitively makes no difference if these two similar boxes are swaped.
This idea of box interchange can be formalized:

Definition 2.10 (Permutation) A map π : V → V is called a permuta-
tion if it is bijective and w(v) = w(π(v)) for all v ∈ V .

The following proposition shows that a permutation of the vertices keeps
feasibility in a packing class:

Proposition 2.11 Let E be a packing class for (V, w, W) and π a permuta-
tion of V . Also, let Eπ = (Eπ

1 , . . . , Eπ
d), where Eπ

i is given by

(u, v) ∈ Ei ⇔ (π(u), π(v)) ∈ Eπ
i

for all u, v ∈ V , 1 ≤ d. Then Eπ is a packing class.

Proof We need to show that P1, P2 and P3 are still satisfied. P1 and P3
will hold as the edge structure does not change from E to Eπ. Also P2 holds
because a permutation per definition keeps vertex sizes. 2

Two packing classes whose only difference is a permutation of V in the
above sense can be considered similar or isomorphic:

Definition 2.12 Let E and E ′ be packing classes for (V, w, W). E is said to
be isomorphic to E ′ if there exists a permutation π on V such that Eπ = E ′.

In an ideal situation isomorphic packing classes would be considered at
most once. However, to the best of our knowledge no algorithm has yet
been found that decides in polynomial time if two packing classes are iso-
morphic. In [Pap94, p. 291] it is even conjectured that no such polynomial
algorithm exists. The problematics are increased by the fact that these de-
cisions have to be made repeatedly as the augmentations progress and that
packing classes are mostly only known partially. Therefore we cannot fully
benefit from the concept of isomorphism. Instead we settle with the special
cases where the permutation only affects exactly two boxes as these can be

2.2 Solving OPP-d 21

checked relatively easy. Pairs of equally sized boxes with the same search in-
formation are called indistinguishable. Also edges between indistinguishable
boxes are called indistinguishable:

Definition 2.13 Let u, v ∈ V be two boxes with w(u) = w(v) in all dimen-
sions and E be the search information at some node in the search tree. u and
v are called indistinguishable with respect to E if

(u, x) ∈ Eσ,i ⇔ (v, x) ∈ Eσ,i

for all i ∈ {1, . . . , d}, σ ∈ {+,−} and x ∈ V \ {u, v}. Also, two edges
e = (u, v) and e′ = (u′, v′) are called indistinguishable with respect to E if u
and u′ as well as v and v′ are indistinguishable with respect to E .

Notice that all boxes are trivially indistinguishable from them selves. Fig-
ure 2.8 shows examples of indistinguishable boxes and edges.

E+,1
v1

v2

v3

v4

v5

v6

E−,1
v1

v2

v3

v4

v5

v6

Figure 2.8: Assume d = 1, w(v1) = w(v6) and w(v3) = w(v4) and
consider the depicted search information. Then v1 and v6 are indistin-
guishable because they have the same adjacencies for all σ ∈ {+,−}
and i ∈ {1}. Also v3 and v4 are indistinguishable. The edges (v1, v3),
(v1, v4), (v3, v6) and (v4, v6) are indistinguishable. Also the edges
(v2, v3) and (v2, v4) are indistinguishable. In E−,1 the edges (v3, v5)
and (v4, v5) are indistinguishable.

The following lemma ensures the existence of an isomorphic packing class
in the same search space in cases where indistinguishable edges exists in a
search node.

Lemma 2.14 Let E be the search information at a given node and A the
set of indistinguishable edges on that node. For any e ∈ A let Ae denote the
subset of edges in A being indistinguishable to e. For any packing class E ∈
L(E) having Ae ∩Ei 6= ∅ there exists an isomorphic packing class E ′ ∈ L(E)
with e ∈ E ′.

Proof For e′ ∈ Ae ∩ Ei we have that e = (u, v) and e′ = (u′, v′) are in-
distinguishable. This means that u, u′ and v, v′ are pairs of indistinguishable

22 Modelling the packing problem

boxes and there must exist a permutation π of V that swaps u with u′ and
v with v′ such that E ′ = Eπ. Per definition of indistinguishable boxes we
have (u, x) ∈ Eσ,i ⇔ (u′, x) ∈ Eσ,i and (v, x) ∈ Eσ,i ⇔ (v′, x) ∈ Eσ,i for all
i ∈ {1, . . . , d}, σ ∈ {+,−} and x ∈ V \ {u, v}. This proves that E ′ ∈ L(E).

2

Figure 2.9 illustrates this lemma.

v1

v2 v3

v4

(a)

v1

v2 v3

v4

(b)

v1

v2 v3

v4

(c)

Figure 2.9: Consider this simplified situation where v2 and v3

are indistinguishable and 2.9(a) is a graph from the search informa-
tion E . The edges (v1, v2) and (v1, v3) are then indistinguishable.
Also the yet unfixed edges (v2, v4) and (v3, v4) are indistinguishable.
Lemma 2.14 on the page before tells that both the graph in 2.9(b) and
2.9(c) will exist in L(E) and that these two graphs are isomorphic.

Lemma 2.14 can be used to improve the augmenting of E at each search
node. Two situations emerge:

1. If A is the set of indistinguishable edges and e ∈ A is the edge that we
currently branch at in dimension xi then for the subtree where e /∈ Ei

also e′ /∈ Ei for all e′ ∈ Ae: Otherwise e′ ∈ Ei would imply that the
search space would indeed contain a packing class with e ∈ E according
to lemma 2.14. Also, there must exist an isomorphic packing class for
each e′ ∈ A in the subtree e ∈ Ei.

2. If A ∩ E−,i 6= ∅ then (e,−, i) is a feasible augmentation for all e ∈ A.
That is: We only need to explore the subtree for one e ∈ A since all
other subtrees just represent isomorphic duplicates of the tree.

2.2.3 The algorithm

This section covers the algorithm of Fekete and Schepers presented in [FS97c].
The algorithm consist of three major parts: The main loop, a method for
testing for packing classes (packingclassTest()) and a method that handles
augmentations (updateSearchInfo()).

2.2 Solving OPP-d 23

The main loop maintains a list N holding all nodes to be explored in
the search tree. Each N ∈ N have the form N = (EN , (e, σ, i)N) where
EN = (EN

+ , EN
−) is the search information for node N and (e, σ, i) is the

augmentation to be performed for that node. For the first node the special
assignment (e, σ, i)N0 = NULL is made. The main loop does as follows:

1. Initialize the algorithm by setting N = {N0} and (e, σ, i)N0 = NULL.

2. While N 6= ∅, select some N ∈ N and remove it from N . For N ,
repeat the following steps until a state different from FIX is obtained
in the below loop:

(a) Use updateSearchInfo() to perform the augmentation in N . The
method returns either the state OK or EXIT.

(b) If the state is OK, use packingclassTest() to check if N contains
a packing class. The method returns an augmentation (e, σ, i) and
either EXIT, FIX, BRANCH or SUCCESS. If FIX is returned,
updateSearchInfo() is called again in order to carry out the
augmentation.

3. If the state is SUCCESS, a packing class has been found. Return EN
+ .

4. If the state is BRANCH, we branch on the returned edge: Create two
new nodes N ′ and N ′′ in N based on the returned (e, σ, i): EN ′

=
EN ′′

= EN , (e, σ, i)N ′

= (e, +, i) and (e, σ, i)N ′′

= (e,−, i).

5. If N is empty, no packing exist. Else, continue from 2.

The method updateSearchInfo() takes as input an augmentation (e, σ, i)
and the search information E . It performs the augmentation on E and returns
either EXIT or OK. If some augmentation implies other feasible augmenta-
tions (as seen in section 2.2.2) these are carried out as well. A list L contains
all augmentations to be carried out in this call of updateSearchInfo(). The
method works as follows:

1. If (e, σ, i) = NULL we are at N0 and EN0 is then initialized in the
following way: First, trivially infeasibility for pairwise boxes is avoided.
If two boxes are xi-infeasible they must overlap in a feasible packing.
That is, for all u, v ∈ V , if wi(u) + wi(v) > Wi then (u, v) is added to
EN0

+,i. Next, cliques induced by the individual box types are also fixed

in EN0

+,i. This is done by utilizing lemma 18 in [FS97b]. We will not
cover the details here. All augmentations done in this initializing step
is stored in L.

24 Modelling the packing problem

2. If we are not at N0 then either σ = + or σ = −. If σ = +, add e to
E+,i and set L = L ∪ {(e, +, i)}. If instead σ = −, consider the set A
of edges indistinguishable from e. As described in section 2.2.2, lemma
2.14 implies that all f ∈ A can be fixed in E−,i as well. So for all f ∈ A,
add f to E−,i and append the augmentations to L.

3. While L 6= ∅, choose a (e, σ, i) ∈ L and remove it from L. For each e
we try to avoid infeasible edge configurations:

(a) Check if P3 is satisfied for the edge e. This is done as described in
section 2.2.1. If P3 cannot be satisfied then return EXIT (drop the
branch) else perform the appropriate augmentation and append it
to L.

(b) Check if e is part of a chordless C4 as described in section 2.2.1.
If such a cycle cannot be avoided then return EXIT, else perform
the appropriate augmentation and append it to L.

(c) Check if e is part of an infeasible clique. If such an infeasible clique
cannot be avoided then return EXIT, else perform the appropriate
augmentation and append it to L.

4. If we have not returned yet (with EXIT) then return OK, indicating
that the search may continue.

The algorithmic details for step 3b and 3c can be found in [FS97c].

The method packingclassTest() that tests for existence of a packing
class takes the search information for the current node as input and returns
an augmentation together with either EXIT, FIX, BRANCH or SUCCESS.
We need to check feasibility for all i = 1, . . . , d. So for each such i do the
following:

1. Let A be an initially empty set containing eventually conflicting edges.
If (V, E{

+,i) is not a comparability graph then let A be the set of all

edges of the 2-chordless odd cycle. Else, if (V, E {
+,i) contains maximal

xi-infeasible clique then let A be the edge set of this clique. Else, if
(V, E+,i) contains an induced C4 then let A be the set of chords of
this C4. All these infeasible edge configurations have been described in
section 2.2.1.

2. A is now a set of edges making the graph infeasible. If A 6= ∅ then do
the following:

2.2 Solving OPP-d 25

(a) If A\E−,i = ∅ then all conflicting edges have already been fixed in
E−,i and no augmentation can therefore be done in order to avoid
infeasibility. Return EXIT.

(b) Else choose an edge e ∈ A \ E−,i. If A \ E−,i = {e} then e must
be fixed correctly as a wrong augmentation of this edge alone
can make the edge set infeasible. The infeasible edge sets found
in step 1 can all be avoided by fixing e in E+,i. Therefore set
(e, σ, i)return = (e, +, i) and return FIX. Else, if |A \ E−,i| > 1 we
branch on e: Return BRANCH. Notice, that only one edge in
A \ E−,i is being branched on. The other edges might automati-
cally be irrelevant when the branch augmentation is carried out
in updateSearchInfo().

If feasibility has been checked for all i = 1, . . . , d and the method has not yet
returned with either EXIT, FIX or BRANCH, the edge set E+ is a packing
class: Return SUCCESS.

2.2.4 Remarks about performance

Even though the presented algorithm is in the current top league regard-
ing to performance [FS97c], each iteration in the branch-and-bound search
may still be very cumbersome: Step 1 in packingclassTest() search for
a maximal clique. This is also known as the clique problem (or CLIQUE)
which is NP-hard. [CRLS01] gives a proof for this by reducing CNF-SAT to
CLIQUE. Fekete and Schepers get around the NP-hard CLIQUE problem by
only considering two cases:

• If a graph is a comparability graph an algorithm from [Gol80] is used
to find a maximal weighted clique in linear time.

• If it is not a comparability graph a heuristic is used to find a maximal
weighted clique. This clique might be suboptimal though.

Step 1 in packingclassTest() also search for chordless cycles or so-called
holes. [NP04] presents an algorithm for finding holes O(|V | + |E|2) time.
As mentioned, these problems have to be solved repeatedly and are thus
contributing significantly to the total computation time.

In the upcoming chapters we will consider packings satisfying the so-
called guillotine property and introduce a further restricted version of the
guillotine property named sticky cuttings.

26 Modelling the packing problem

3 Chapter 3

The guillotine restriction

We will now add a guillotine cut condition to feasible packings. A guillotine
cut is a side parallel cut through the whole container that does not intersect
with any box. This cut splits the container in two smaller cut slices which
can each be cut again. We divide the cutting in stages and require all cuts
of the same cut slice in the same stage to be parallel and the cuts in two
consecutive stages to be orthogonal.

The idea of k-stage guillotine cuttings is formalized in the following defi-
nitions:

Definition 3.1 (Guillotine packing) Let p be a d dimensional packing of
V . A d− 1 dimensional axis parallel hyper plane P is called a guillotine cut
if it divides V into two disjoint nonempty subsets V1 and V2 such that no box
v ∈ V is intersected by P with respect to p.

Two subsets U1, U2 ⊆ U ⊆ V are called cut slices if and only if they are
a result of a guillotine cut of U .

The cutting of V is done in recursion stages. In each stage all cuts
splitting a cut slice must be parallel. A cut slice U is in the k’th stage if
it is made in the k’th recursion step. A packing p of the set V is a k-stage
guillotine packing if and only if it can be split into |V | singleton sets in k
stages.

If there are no restrictions on k we just say that p is a guillotine packing.

Notice, that we can uniquely identify a cutting plane P by the axis parallel
unit vector that is orthogonal to P. Figure 3.1 on the following page shows
examples of guillotine cuts for d = 2 and d = 3.

The literature sometimes distinguish between if trimming are allowed
after the recursive guillotine cutting or not. If trimming is allowed, the
recursive cutting must to result in pieces being larger than the box they

27

28 The guillotine restriction

1
23

4

5

6
78

(a) 4 stage guillotine
cut for d = 2

1

5 3

2

6

7

(b) 3 stage guillotine
cut for d = 3

Figure 3.1: Example of guillotine cutable packings. The numbers
indicate one out of many feasible orderings of the cut slices. Cut
number 4 in 3.1(b) is hidden in the back. It splits the grey cut slice.

contain. If trimming is not allowed, the recursive cutting must result in
pieces with the exact size of the box they contain. In this text we always
allow trimming.

The decision problem OPP is NP-hard in the case where no restrictions
exist for the cutting. But even though the guillotine restriction reduces the
number of feasible packings the following theorem proves that the complexity
is not reduced.

Theorem 3.2 The subproblem of OPP where packings are required to be
guillotine cuttable is NP-hard.

Proof Let S = {w1, . . . , wn} be the set of n weights summarizing to W =
∑

wi. The 2-partition problem is the task of finding two disjoint subsets
S ′, S ′′ ⊂ S with S ′ ∪ S ′′ = S where

∑

wi∈S′

wi =
∑

wj∈S′′

wj =
W

2
.

This is known to be NP-hard and we will reduce 2-partition to the guillotine
restricted OPP-2.

Consider an OPP-2 instance with n boxes of size (w1, 1), . . . , (wn, 1) and
a container of size (1

2
W, 2) where W =

∑

wi. If an OPP-2 solution can
be found for this instance it will be a filling of the container by two rows,
each being 1 unit high and 1

2
W units wide. The packing is clearly guillotine

cuttable as the two rows can be separated in the first cut stage and each of
them sliced up afterwards. Solving the OPP with the guillotine restriction for

3.1 Performance 29

this instance also solves the 2-partition problem for the instance mentioned
above. Similarly if the 2-partition problem is solved, the solution is equivalent
to a guillotine restricted OPP solution similar to the one described above.

As the reduction is polynomial, OPP-2 is NP-hard. 2

3.1 Performance

In the following we the concept of a blocked ring.

Definition 3.3 (Blocked ring) A set of boxes B = {v1, . . . , vn} form a
blocked ring if for all u, v ∈ B all planes separating u and v intersect some
other w ∈ B \ {u, v}.

Figure 3.2 shows examples of blocked rings. Notice that for a blocked ring
B we have |B| ≥ 4 for d = 2 and |B| ≥ 3 for d ≥ 3. [ST96] introduces the

(a) d = 2 (b) d = 3

Figure 3.2: Examples of blocked rings for d = 2 and d = 3.

concept of a G4-structure for d = 2: A G4-structure is a packing containing
at least one blocked ring. The following lemma shows that blocked rings and
guillotine packings are strongly connected.

Lemma 3.4 A set of boxes V can be packed as a guillotine packing if and
only if a packing p with no blocked ring exist for V .

Proof (⇐) First, assume that a packing p with no blocked rings exist for
V . As no blocked rings exist there must, per definition, exist a number of
parallel cutting planes that split V into a number of cut slices. All these cut
slices are subsets of V so if no blocked ring existed for V with the packing p,
then also no blocked ring will exist for the cut slices. Applying this argument

30 The guillotine restriction

recursively, we can cut whole V into |V | singleton cut slices. That is, p is a
guillotine packing for V .

(⇒) Next, assume that p is a guillotine packing containing some blocked
ring B. Then no cutting plane splitting B exist at any cutting stage, con-
tradicting that p is a guillotine packing. Consequently no blocked ring can
exist. 2

When considering the OBPP-2 problem, it emerge that guillotine pack-
ings use at most twice as many containers for the same box set as unrestricted
packings:

Theorem 3.5 Let V be a set of boxes that can be packed into OPT con-
tainers with the packings p1, . . . , pOPT and let OPTg be the maximal number
of containers needed in order to arrange V into a guillotine packing. Then
asymptotically OPTg

OPT
= 2 for d = 2.

Proof Given a packing p lemma 3.4 on the preceding page tells that a
necessary and sufficient condition for that packing to be a guillotine packing
is that no blocked ring exist. Let C1, . . . , Cn denote the containers currently
holding the packing and V ′ ⊂ V denote an initially empty set. For each
blocked ring in Ci, pick a box from the blocked ring, remove it from Ci and
add it to V ′. This makes Ci a guillotine packing.

Next, we show that the content of V ′ can always be made guillotine
packable using no more than n containers. Let L0(S) denote the continuous
lower bound defined as the ratio VS

VC
where VS is the total volume of the boxes

in S and VC is the container volume. L0 will be more formally introduced in
chapter 6. In [MV98] Martello and Vigo present an algorithm that produces
a guillotine packing using no more than 4L0(S) containers for the case d = 2.
We utilize this result when moving boxes from Ci to V ′. For each of the boxes
moved to V ′, select the box with smallest area from the blocked ring. There
are at least 4 boxes in each blocked ring for the case d = 2 so the boxes
in V ′ will have a volume of at most nVC

4
resulting in L0(V

′) ≤ dn
4
e. The

algorithm can therefore pack V ′ into at most 4dn
4
e containers. In total we

have OPTg ≤ n + 4dn
4
e and lim OPTg

OPT
≤ 2.

To show OPTg

OPT
≥ 2, consider a G4-structure of 4n boxes (see figure 3.3 on

the next page). Moving a box from each blocked ring to another container
makes each container guillotine packable. 2

Open problem 3.6 What is OPTg

OPT
for d > 2?

3.2 Characteristics of guillotine cuts 31

(a) Unrestricted (b) Guillotine cutting

Figure 3.3: This G4-structure shows OPTg ≥ 2. It consits of 4n
boxes with two boxes of size (1, 2i) and two boxes of size (2i, 1) for
each i ∈ {1, . . . , n}. The container size is (2n+1, 2n+1). 3.3(a) shows
the unrestricted packing and 3.3(b) the split into two containers.

3.2 Characteristics of guillotine cuts

Let us return to the decision problem and have a look on how guillotine
packings behave in framework by Fekete and Schepers described in chapter
2.

Consider the packing class E = (E1, . . . , Ed) for a guillotine packing and
let α1, . . . , αk denote the axes orthogonal to the cutting planes for stage
1, . . . , k. This is a minor simplification as we hereby only consider a single
path in the cutting-recursion tree, but it clearifies the notation and the results
below can without problems be generalized by applying the proofs to every
path in the recursion tree.

The cut slices for stage 1 are exactly the connected subgraphs in Gα1
.

That is, let V1, . . . , Vl denote the vertices in the connected subgraphs of Gα1
.

The induced subgraphs Gα1
[V1], . . . , Gα1

[Vl] are disconnected in Gα1
and con-

tain exactly the vertices of the first stage cuts. Figure 3.4 on the following
page gives an example of this situation.

Similarly, the second stage cut slices of a first stage cut slice Vj is ex-
actly the connected components in Gα2

[Vj]. By proceeding with a recursive
dissolvement the vertex set for each induced subgraph will end up being sin-
gleton. We have then split the packing into individual boxes. The following
lemma formalizes this property:

Lemma 3.7 (Graph dissolvement) For a guillotine packing p and a cut
stage 1 ≤ l < k let U denote the set of vertices in a cut slice for stage l. Also,
let U1, . . . , Un denote the vertices of the connected components in Gαl+1

[U].

32 The guillotine restriction

v1
v2

v3

v4

v5
v6

x1

x2

(a) Guillotine packing

G1 v1

v2

v3

v4

v5

v6

G2 v1

v2

v3

v4

v5

v6

(b) Corresponding interval graphs

Figure 3.4: The cut slices for the first-stage cut of the packing in
3.4(a) is exactly given by the connected components in Gα1

(in this
case G2).

Then U1, . . . , Un is exactly the vertex sets of the cut slices for stage l + 1.

Proof As Ui and Uj are unconnected in Gαl+1
[U] they can be split by a

cutting plane orthogonal to αl+1. I.e all components in Gαl+1
[U] are cut slices

for stage l + 1. Reversely, if Ui and Uj are cut slices of U then Ui and Uj are
each connected in Gαl+1

[U] but Ui is not connected to Uj. 2

The order of consecutive cuts in a guillotine packing may be permuted
under certain conditions without destroying feasibility:

Lemma 3.8 (Cut directions) Let αi and αj be consecutive cut directions
with i 6= j and U be a cut slice. Let U11, U12, U21, U22 ⊆ U be disjoint subsets
of U with U11 ∪ U12 ∪ U21 ∪ U22 = U . If Gαi

[U11 ∪ U12] and Gαi
[U21 ∪ U22]

are disconnected and also Gαj
[U11 ∪U21] and Gαj

[U12 ∪U22] are disconnected
then U may be split by a cut order αi, αj as well as αj, αi.

Proof Figure 3.5 on the next page depicts the situation. Consider the
generation of the cut slice U11. Cutting U orthogonal to αi results in the cut
slices U11 ∪ U21 and U12 ∪ U22. These sets are disconnected in Gαj

so cutting
U11 ∪ U21 orthogonal to αj results in the sets U11 and U21.

Next, if we first cut U orthogonal to αj the subsets U11∪U12 and U21∪U22

are obtained. Both sets are disconnected in Gαi
and thus cutting U11 ∪ U12

orthogonal to αi results in the sets U11 and U12.

As seen, both cut orders produce the set U11. A similar argument can be
made for U12, U21 and U22. 2

Lemma 3.7 and lemma 3.8 can be applied recursively in order to dissolve

3.2 Characteristics of guillotine cuts 33

U11 U12

U21 U22

αi

αj

Figure 3.5: Lemma 3.8 deals with permutation of cut stages. For
this packing cutting stage i and j may be freely permuted.

a complete packing into individual boxes. Figure 3.6 on the following page
illustrates such a recursive dissolvement.

3.2.1 Ensuring the guillotine property

Lemma 3.7 implies a necessary and sufficient condition for a packing class
(E+,1, . . . , E+,d) not being a representation of a guillotine packing: Consider
a recursive dissolvement of E+. If Gi[U] is an induced subgraph produced by
a recursive dissolvement, |U | > 1 and no graph Gj[U], j 6= i is disconnected,
then the dissolvement cannot proceed and the packing can therefore not be a
guillotine packing. The following algorithm ensures the guillotine property:

1. Perform a recursive dissolvement as suggested by lemma 3.7. For each
iteration let Gj[U] denote the induced subgraph currently being con-
sidered.

2. Let J = {j | (U, E+,j) is disconnected}. If J = {j} and Gj[U] has
exactly two components C1 and C2 we have to make sure that these
components stay separated: For all edges e ∈ E {

+ \ E− connecting C1

and C2, make the augmentation (e,−, j).

3. If |J | = 0 the packing class is not a guillotine packing. Drop the branch.

3.2.2 P2: Handling xi-infeasibility

To measure the dimensions of a packing represented by a packing class we can
make a transitive orientation and assign coordinates to each box in O(|V |2)
time. Finding a maximal weighted clique in E{

+,i is, worst case, an NP-hard
subproblem as stated in section 2.2.4 but Fekete and Schepers settle with

34 The guillotine restriction

v1
v2

v3

v4

v5
v6

x1

x2

(a) Cut order: x2, x1, x2

v1

v2

v3

v4

v5

v6

(b) G1 Initial graph. First cut stage
marked.

v1

v2

v3

v4

v5

v6

(c) G2 Initial graph

v1

v2

v3

v4

v5

v6

(d) G1 after first cut

v1

v2

v3

v4

v5

v6

(e) G2 after first cut. Second stage
cuts marked.

v1

v2

v3

v4

v5

v6

(f) G1 after second cut. Third stage
cut marked.

v1

v2

v3

v4

v5

v6

(g) G2 after second cut.

Figure 3.6: 3.6(a) shows the packing to be dissolved. In 3.6(c) the
connected components in G2 are highlighted and they result in two
induced subgraphs of G1 in 3.6(b) corresponding to the first stage cut.
The induced subgraphs of G1, 3.6(d), suggest where to slice G2 in the
second stage, 3.6(e). Finally the components of G2 in 3.6(g) indicate
the last cut stage, 3.6(f) and the graph dissolvement is then completed.

3.2 Characteristics of guillotine cuts 35

suboptimal maximal cliques in the case where the graph is not a comparabil-
ity graph. With the dissolvement tools described above we can construct a
polynomial time clique finding algorithm in which a maximal clique is found
even if the graph is not a comparability graph. The algorithm utilizes the
following dissolvement based width measuring.

1. The xi-width of an induced subgraph Gi[U] is the sum of the xi-widths
of its connected components U1, . . . , Un.

2. Also, the xi-width of each Ul is the maximum xi-width of each of the
connected components in Gj[Ul] for some appropriate j 6= i: If U is
a guillotine packing and Ul is not singleton there must, for each l =
1, . . . , n, exist a j ∈ {1, . . . , d} for which Gj[Ul] is disconnected (lemma
3.7). Lemma 3.8 tells us that we can perform the measuring on an
arbitrary graph in which Ul is disconnected.

This measurement is then applied recursively.

It is now interesting to estimate the impact of each measurement. Con-
nected components can be identified by first visiting all edges and enumerat-
ing their vertices, and next traversing all vertices to create the subsets. This
takes O(|V |2 + |V |) time. In order to find a graph Gi in which the induced
subgraph of a vertex set U is disconnected we have to check at most d graphs
and for a k stage packing, these checks must be done at most k times. Thus a
worst case complexity of O(dk|V |2+dk|V |) = O(dk|V |2) for measuring of the
xi-width. Notice, that with an appropriate implementation, all d xi-widths
can be measured in the same run.

As shown in lemma 3.8 a guillotine cutting can be obtained by dissolv-
ing each cut slice orthogonal to any cut direction αi for which its induced
subgraph is disconnected and therefore the dissolvement based measuring
can also follow any feasible cut order. But whereas the measuring based
on transitive orientations was unique for each packing class, each cut order
may lead to different size measurings in the dissolvement based algorithm.
Figure 3.7 on the next page shows an example of how different dissolvements
leads to different packing topologies. So in order to maintain consistency
the dissolvements should always be tried completed in the same order. E.g.
starting from G1 and ending at Gd.

Ensuring the P2 property, i.e. preventing infeasible cliques, is either done
by settling with the suboptimal cliques as in the original framework by Fekete
and Schepers or by solving the NP-hard CLIQUE subproblem. But with use
of the dissolvement based measuring a maximal clique can always be found
in O(dk|V |2) time. When E+ is augmented with an edge e we avoid infeasible

36 The guillotine restriction

G1 v1

v2 v3

G2 v1

v2 v3

(a)

v1 v2
v3

(b)

v1

v2

v3

x1

x2

(c)

Figure 3.7: Consider the boxes v1, v2 and v3 with dimensions (15, 15),
(17, 12) and (12, 17). The graphs in 3.7(a) have no edges and may
be dissolved in the order x1, x2 as well as x2, x1. The former order
results in the packing seen in 3.7(b) with dimension (44, 17) whereas
the latter results in the packing seen in 3.7(c) with dimension (17, 44).
Using the measuring based on transitive orientations as done in the
original framework by Fekete and Schepers the graphs would represent
a packing where each box was placed at origin or at the corner of
another box resulting in a bounding dimension of (44, 44).

stable sets in E{
+,i by the following algorithm. For each i let Gi denote the

graph (V, E+,i).

1. For each i = 1, . . . , d calculate the xi-width as described above.

2. For each recursion step in the xi measuring do the following: Let j ∈
{1, . . . , d} be the current cut direction and let Gj[U] denote the induced
subgraph currently being measured. If j 6= i, mark the component in
Gj[U] with maximum xi-width. Long enough down the recursion this
marking will be applied to individual vertices.

3. Mark all edges in E{
+,i that connect marked vertices.

4. The marked edges in E{
+,i form a clique among the xi-widest subset of

boxes. If the packing is measured xi-infeasible, branch on every marked
edge in E{

+,i \ E−,i.

Example 3.9 Consider figure 3.6(a) on page 34. If the packing had been x1-
infeasible the vertex set {v3, v5, v6} would be marked by the above algorithm
and induce an x1-infeasible clique in E{

+,1. Similarly, if the packing had been
x2-infeasible the vertex set {v2, v4, v5} would be marked and induce an x2-
infeasible clique in E{

+,2. 3

3.2 Characteristics of guillotine cuts 37

The algorithm is simply a trivally extended dissolvement and has therefore
O(dk|V |2) time complexity.

The two ways of finding and measuring maximal cliques both have pros
and cons. Let MC denote the original measuring approach based on con-
ventional clique finding and transitive orientations and let MD denote the
approach based on recursive dissolvement. Each measuring method implies
a packing topology when used to construct a packing from a set of graphs.
For each i ∈ {1, . . . , d} let Gi = (V, E+,i). We can do the following observa-
tions:

O1 The same MD topology can be represented by numerous graphs. Fig-
ure 3.8 gives an example on this.

G1 v1

v2 v3

G2 v1

v2 v3

(a)

G1 v1

v2 v3

G2 v1

v2 v3

(b)

G1 v1

v2 v3

G2 v1

v2 v3

(c)

G1 v1

v2 v3

G2 v1

v2 v3

(d)

Figure 3.8: All the shown graphs will represent the same topology
using MD and the cut order x1, x2. For this vertex set with cardinality
3 and no edges in G1 a total of 23 = 8 different graphs would represent
the same MD topology.

O2 In contrast there is a one-to-one correspodance between the set of
graphs (G1, . . . , Gd) and MC topologies.

O3 Each topology found by using MC may be “dominated” by several MD

topologies. I.e. the MD topologies will never have one box at the corner
of another box so that no other box aligns to one of its faces. Hence
the MD topologies may be thought of as flattened MC topologies that
do not waste container space. Considering a dominated MC topology
may be waste of time. Figure 3.9 on the following page illustrates this
thought.

O4 The MD only results in flattened topologies.

38 The guillotine restriction

(a) (b) (c)

Figure 3.9: 3.9(a) shows a topology obtained from MC on a set of sta-
ble graphs. The unused space (inside the dotted rectangle) is smaller
when using MD as no two boxes are placed diagonally. 3.9(b) shows
an MD topology with the dissolvement order x1, x2. 3.9(c) shows three
(out of many) other “flattened” topologies that waste less container
space and thus may be thought of as dominating the MC topology.

So the MC based topologies have no redundant graph representations but
each measuring is either not exact (in case the complement graph is not a
comparability graph) or contains an NP-hard subproblem, and also multi-
ple xi-infeasible packings, not existing in the MD search space, are created.
These pros and cons leave a number of open problems:

Open problem 3.10 Given the considerations O1-O4, is the search space
for MC smaller than the search space for MD?

Open problem 3.11 Is the total time complexity for the algorithm search-
ing MC topologies smaller than the total time complexity for the algorithm
searching MD topologies?

The experimental work presented in chapter 5 render probable that the an-
swer to both problems is yes but until a formal proof has been given they
are still considered open.

3.2.3 P1 and P3

P1 requires all graphs to be interval graphs. According to theorem 2.8 on
page 15 we need to ensure that E+,i does not contain a chordless C4 and E{

+,i is
a comparability graph. However, in order for a set of graphs G1, . . . , Gd to be
recursively dissolveable it is not necessary that these properties are satisfied:
As long as connected components can be recursively dissolved into singleton
sets by recursive splits of disconnected components, enough information is
available to construct a guillotine packing. Thus, we may completely skip

3.3 Tree representation 39

the check for P1 and hereby 1) get rid of a subroutine with a complexity
of O(|V | + |E|2) in each iteration and 2) obtain a larger number of feasi-
ble graphs. The latter might also expand the search space with an even
larger amount of infeasible graphs though and therefore increase the total
complexity.

Open problem 3.12 Does the total complexity decrease by neglecting P1?

It is always possible to construct “real” P1 satisfying interval graphs from
the packings obtained by the recursive dissolvement. These interval graphs
could be thought of as the packing class equivalents to the dissolvable graphs.
Figure 3.10 illustrates a P1 violation and the corresponding feasible guillotine
packing.

G1
v1

v2 v3

v4

G2
v1

v2 v3

v4

(a)

v1

v2

v3

v4
x1

x2

(b)

Figure 3.10: G1 violates P1 and if we construct a packing class from
3.10(b) by creating interval graphs we will not obtain the graphs in
3.10(a). However, the graphs in 3.10(a) still represents the guillotine
packing in 3.10(a) by using the recursive dissolvement suggested by
lemma 3.7 on page 31.

Lemma 3.7 and lemma 3.8 only rely on the fact that connected compo-
nents represent cut slices and will therefore still hold when the requirement
of P1 is relaxed.

It is possible to completely skip the check for P3 as the dissolvement
automatically results in a packing in which P3 is satisfied. However, in order
to decrease the search space we ensure P3 as in the original algorithm by, for
each augmented edge e = (u, v), considering the intersection ∩d

i=1E+,i.

3.3 Tree representation

The recursive cutting used in guillotine packings suggest a tree represen-
tation. This section presents a tree representation which only holds topo-
logically strictly different guillotine packings and a brute-force algorithm to
traverse all 1, . . . , k-stage guillotine packings for a set V .

40 The guillotine restriction

3.3.1 A short survey

The guillotine constraint has been approached with tree representations be-
fore. Below we give a short survey of three different approaches. The articles
described all concern differently constrained guillotine cutting problems. As
we are only considering unconstrained guillotine cutting problems only the
parts relevant for making bounds and representations are described.

Recursive cutting

In [CW77] Christofides and Whitlock present a branch-and-bound algorithm
for OKP-2. Starting with the original container the strategy is to recursively
perform guillotine cuts. In each iteration a rectangle is chosen for further
cutting until a sufficient amount of smaller rectangles has been made which
satisfies certain stop criteria. The cutting process can be represented in a
binary tree structure where each non-leaf node holds a cut operation and each
leaf is a rectangle in the final cut. When a rectangle is chosen for further
cutting each possible cut of that rectangle is done in a separate branch. As we
shall see below, this cutting will lead to duplicated cut structures in multiple
branch nodes but by restricting the set of feasible cuts on each rectangle such
redundancy can be avoided:

Consider a rectangle of size (w, h) and a vertical cut at p where 1 ≤ p < w.
This cut produces two new rectangles of size (p, h) and (w− p, h). The same
two rectangles could have been made by cutting at w− p so the branch node
containing the latter cut will be a replica of the branch node holding the
former. By restricting the allowed cut positions to 1 ≤ p ≤ bw/2c such
symmetry is avoided.

A rectangle can be divided into three slices by using two nodes from the
cutting tree. Consider again a rectangle of size (w, h) and two vertical cuts
at p and q where 1 ≤ p < q < w. This will produce the rectangles (p, h),
(q − p, h) and (w − q, h) which can be obtained by first cutting (w, h) at
q and secondly cutting the produced (q, h) rectangle at p. The same three
rectangles could be obtained by first cutting (w, h) at p and secondly the
produced (w−p, b) rectangle at q−p. This kind of symmetry can be avoided
by requiring that if a rectangle is cut at p1 in one tree node then the successors
should be cut at at least p2 > p1.

When all feasible cuts have been made on a rectangle it is marked with a
special 0-cut, indicating that it may be considered fixed. At each iteration a
bound is calculated for the greatest possible value available for the rectangles
that fit in the 0-cut. Solving the value maximization subproblem is irrelevant

3.3 Tree representation 41

for this context and will not be discussed further.

The concept of restricting the search space in order to deal with symmetry
is also used below.

Normalized polish representation

In [WL86] Wong and Liu introduce a representation of guillotine cut struc-
tures by normalized reverse polish expressions which can be thought of as a
postorder traversal of a binary parse tree where each branch node holds an
operator and each leaf holds an operand. A polish expression is normalized
if no two consecutive operators are the same. As above, the series of cuts
performed in order to construct a guillotine cut structure can be described as
a rooted binary cutting tree where each branch node represents a vertical or
horizontal cut and each leaf represents a final rectangle. In such a tree repre-
sentation multiple trees will represent the same cut structure. The concept
of skewed trees deals with this problem: A skewed tree is a binary tree in
which no branch node holds an operand that equals the operand of its right
child. It can be shown that each guillotine cut structure can be represented
by a unique skewed tree. Also it can be shown that a bijective map exist
between the set of skewed trees and the set of normalized polish expressions.
By only considering skewed trees, symmetry is avoided and by considering
polish expressions, cut structures can be modified by manipulating the se-
quence of operands and operators. Figure 3.11 shows an example of a tree
structure and the corresponding representation in reverse polish notation.

α1

α1

v1 v2

α2

v3
α1

v4 v5

(a)

v1v2α1v3v4v5α1α2α1

(b)

Figure 3.11: 3.11(a) shows a skewed tree representing a cut struc-
ture for the cut directions α1 and α2 and the rectangles v1, . . . , v5. A
postorder traversal of the tree visits the nodes in the order seen in
3.11(b) and this sequence can be thought of as a representation of the
tree based on normalized reverse polish notation where α1 and α2 are
cut operators.

42 The guillotine restriction

An assembling algorithm

The cutting representation in [CW77] and [WL86] described above can be
thought of as a top-down approach starting with the container at the top-
node and smaller cut slices in successor nodes. In [Wan83] Wang presents a
bottom-up approach based on the idea of iteratively assembling the smaller
rectangles into larger ones by horizontal or vertical glueing of their bounding
rectangles.

The article does not deal with symmetry as in the two examples above
but it uses a bound in order to drop search nodes earlier: For each iteration
the ratio Vin/Vout is considered where Vin is the summarized area of the
boxes inside the bounding rectangle and Vout is the area of the bounding
box. For some given β each constructed rectangle with Vin/Vout < β is
rejected. The difference Vout − Vin is called trim waste. If β = 1 is chosen
only guillotine packings with zero trim waste is accepted while all possible
guillotine packings are accepted if β = 0.

The search space is traversed by stepwise constructing two sets F (k) and
L(k). For k = 0 we set F (0) = L(0) = V . The set F (k) holds all packings that
can be build by horizontally or vertically glueing two bounding rectangles of
packings from L(k−1) such that 1) the requirement of trim waste is satisfied
and 2) container boundaries are not exceeded. Afterwards L(k) = L(k−1)∪F (k)

and equivalent packings are removed from L(k). When F (k) is empty, the
packing from L(k) with smallest trim waste is selected.

3.3.2 Packing trees

Below we present a tree representation that has the benefits of symmetry
avoidance as seen in [CW77] and [WL86] but also can be used to reject
whole subsets of guillotine packings based on volume estimations. The latter
is a result of lemma 3.16 on page 45.

The recursive dissolving of guillotine packings described in section 3.2
suggests a tree representation where each leaf node is a vertex v ∈ V and
each cut slice is represented by a branch node, starting with the root node
holding the first cutting stage. The only necessary and sufficient condition for
a tree to represent a feasible guillotine packing is that the resulting packing
is xi-feasible for all 1 ≤ i ≤ d.

We associate each branch node with a cut direction αi and say that the
tree is normalized if no branch node has same cut direction as any of its
children.

3.3 Tree representation 43

Let U be a cut slice at stage l. We notice that cut slices of U at stage l+1
may be permuted arbitrary without destroying the feasibility. This leads to
the concept of order equivalent trees:

Definition 3.13 Two trees T and T ′ are order equivalent if there exist a
subset S of the nodes of T so that for each node in S, the children for this
node can be reordered and the reordering of the children of S makes T = T ′.

Below we introduce the concept of packing trees for use in enumeration of
all strictly different guillotine packings, taking normalized and order equiv-
alent trees into account. As mentioned, we only consider unordered trees.
That is, trees for which there is no ordering of the children for branch nodes.
Such trees T can be represented by sets of sets together with a map α from
the set of all trees to the set {1, . . . , d} that specifies the cut direction for
each branch node:

Definition 3.14 (Packing tree) A set T with a map α is a packing tree
if and only if the following properties holds:

T1 |T | ≥ 2

T2 For all elements t ∈ T , either t ∈ V or t is a packing tree itself

T3 S(v, T) ≤ 1 for all v ∈ V where

S : V × T → N0

(v, T) 7→

∑

t∈T S(v, t) , t is a packing tree
1 , t = v
0 , t 6= v

and T is the set of all packing trees.

T4 T is normalized with respect to the map α

The T3 property ensures that each v ∈ V is contained in at most one subtree.
Notice, that the singleton set {v} is not a packing tree even though it is a
fully legal guillotine packing. The property T1, however, comes in handy
as it eliminates a lot of equivalent representations of the same packing. As
a packing tree has mathematical sets (without ordering) as branch nodes,
order equivalent trees are automatically handled by the same packing tree.
Figure 3.12 on the next page shows a set of trees all representing the same
packing. The following example illustrates the packing tree definition using
sets.

44 The guillotine restriction

α1

α2

v1 v2 v3

v4

(a)

α1

α2

v3 v1 v2

v4

(b)

α1

v4 α2

v3
α2

v1 v2

(c)

α1

v4 α3

α2

v1 v2 v3

(d)

Figure 3.12: The trees in 3.12(a) and 3.12(b) are order equivalent.
3.12(c) is not normalized and is therefore not a packing tree. Joining
the two α2 nodes would result in an equivalent tree which is indeed a
feasible packing tree. Also 3.12(d) is not a cutting tree as T1 is not
satisfied. However it represents the same packing as the other trees.

Example 3.15 Let {. . . }i denote that the elements are cut by planes orthog-
onal to the xi-axis. The sets {v1, {v2, v3}

2}1 and {{v1, v2}
2, {v3, {v4, v5}

1}2}1

are both packing trees, but {v1, {v1, v2}2}1 and {{v1, v2}2, {v3, {v4}1}2}1 are
not. The former because v1 occurs in two subsets and the latter because T1
is violated with the singleton subset {v4}1. 3

Checking feasibility

So how do we perform a feasibility check on a packing tree? xi-feasibility
checks are done equivalent to the recursive measuring described in section
3.2: The xi-width of a packing tree T is given by the map wi : T → R where

wi(T) =

∑

t∈T

wi(t) , α(T) = i

max
t∈T

wi(t) , α(T) 6= i.

There are |V | leafs and at most |V |− 1 branch nodes in T and thus the com-
plexity for this measuring is O(|V |). In order to make a complete xi-feasibility
check for a given tree topology, we need to examine all combinations of cut-
orders, starting with d options for the root node and d−1 options for the rest
of the branch nodes. This results in a total complexity of O(|V |d(d−1)|V |−1)
which is polynomial (in fact linear) for d = 2.

If we change the image set of wi from R to N a sufficient condition arise
for which no sequence α1, . . . , αk of cut directions make T feasible:

3.3 Tree representation 45

Lemma 3.16 Let T be a packing tree and V ∈ N the sum of all volumes
of t ∈ T . Let V ′ denote the smallest integer having at least d factors and
V ′ ≥ V. Then the volume of T is at least V ′.

Proof The volume of T is the volume of a d dimensional box. Thus it is
a product of at least d integers. The volume of T is trivially at least V and
as V ′ is the smallest number above V with d factors also the volume must be
at least V ′. 2

The number of factors in V can be found by prime factorization of V.

Example 3.17 Suppose a packing tree T for d = 3 consist of 3 cut slices
with volumes 3, 3 and 4 respectively. The sum of these volumes is 10 = 2 · 5
and the nearest larger integer with 3 factors is 12 = 2 ·2 ·3. Thus the volume
of T is at least 12. 3

The above infeasibility condition can be verified in O(|V |) time.

3.3.3 A brute-force algorithm

We aim to find an algorithm that traverse all possible packing trees. It is
not expected to perform well, as it is a brute-force algorithm, but is intended
to serve as a proof for the existence of such a traversal algorithm. Define
δ : T → N0 as the depth of T :

δ(T) =

{

1 + max
t∈T

δ(t) , T is a packing tree

0 , T ∈ V

For a packing tree T let λi(T) denote the number of subtrees t of T (including
T itself) with δ(t) = i. Then the following properties hold:

• In a k-stage packing, λ0(T) = |V | and λk(T) = 1

• λi(T) ≤ λi−1(T) as each set T with δ(T) = i must contain at least
one set t with δ(t) = i − 1. Also λi(T) ≤ b1

2

∑i−1
j=0 λj(T)c because of

property T1.

• As lower bound for λi we only know that λi ≥ 1. Figure 3.13 on the
following page shows an instance having λi = 1 for all i > 0.

Every value assignment of the tuple (λ0, . . . , λk) represents a whole class
of trees. This is illustrated in figure 3.14 on the next page. All feasible
packing trees are traversed as follows:

46 The guillotine restriction

Figure 3.13: Example of tree having λi = 1 for all i > 0

v2 v3

v1

v1 v3

v2

v1 v2

v3

Figure 3.14: For the tuple (λ0, λ1, λ2) = (3, 1, 1) exactly three dif-
ferent tree topologies exist. Notice that permuting the children for a
node just results in an order equivalent tree.

1. Construct all feasible assignments of (λ0, . . . , λk) systematically follow-
ing the above conditions.

2. For each (λ0, . . . , λk)-assignment, construct all trees conforming to these
λ-values (see below).

3. For each tree, first do the quick verification of the infeasibility condi-
tion described in lemma 3.16 on the preceding page. Next, perform a
feasibility check for all 1 ≤ xi ≤ d.

The following paragraph gives an outline of how all trees conforming to a
set of λ-values are0 constructed. For a fixed set of depth counts (λ0, . . . , λk)
the following method traverse all trees conforming to these values. The tree
construction is done in k + 1 steps: In step 0, λ0 = |V | singleton sets are
created, each containing a box v ∈ V . In step 1, λ1 sets are constructed from
at least λ1 of the sets from step 0. In step 2, λ2 sets are constructed from
at least λ2 of the sets from step 1 and eventually some of the yet unassigned
sets from step 0. Generally, in step j, λj sets are constructed from at least
λj of the sets from step j− 1 and eventually some of the yet unassigned sets
from earlier steps. In the last step k a set composed by all unassigned sets is
constructed. This final superset is the root node. For each level, 0 ≤ j ≤ k,
we define the sets Tj1, . . . , Tjλj

to hold the λj trees of depth j. In level 0,

each T0i
is assigned exactly one v ∈ V .

3.3 Tree representation 47

Let T be the set of trees/root nodes constructed so far and define some
arbitrary ordering R≥ of T . That is, in level 0, T will contain all T0i

, 1 ≤
i ≤ λ0 = |V |. In level j > 0, when a subset of root nodes T ′ ⊆ T of depth
δ(T ′) < j where T ′ ∈ T ′ is chosen as elements in a new tree/set T we set
T = {T ′} ∪ T \ T ′. The set T will in level k contain exactly one superset –
the root node.

Example 3.18 Consider the tuple (λ0, λ1, λ2) = (5, 2, 1). The five trees in
level 0 are T01

= {v1}, T02
= {v2}, . . . , T05

= {v5} and T = {T01
, . . . , T05

}.
λ1 = 2 so two trees of depth 1 must be constructed in level 1. One possi-
ble construction is T11

= {T01
, T03
} and T12

= {T02
, T04
} resulting in T =

{T05
, T11

, T12
}. In the last level we get T21

= {T05
, T11

, T12
} and thus T =

{T21
}. 3

The described stepwise selection of sets from T is done by enumerating
the elements in the following way: In level j each node T ∈ T is assigned a
value from the set {NULL, 1, . . . , λj} indicating which set Tji

that contains
T . The special value NULL indicates that T is not assigned any set at this
level.

In this assignment, certain rules have to be followed in order to make sure
that valid trees are constructed:

1. We have to ensure that exactly λj trees of depth j is constructed in
level j. This is done by splitting each step in two substeps. In the
fist substep we select λj elements T ∈ T having δ(T) = j − 1. The
i’th selected T with respect to R≥ is assigned the set Tji

, i.e. T is
assigned the value i ∈ {1, . . . , λj}. By respecting the ordering R≥ in
the assignment symmetry is avoided. There is only one such assignment
for j = 0 and j = k.

Let S denote the elements selected in this step and observe that all
such first-substep assignments can be constructed easily as the task
is equivalent to the task of assigning the numbers 1, . . . , λj to λj−1

horizontally aligned items so that all λj numbers are used exactly once
and so that the number for item x is smaller than the number for item y
if x is to the left of y. In this substep the depth-configuration matching
the λ-values is ensured and the tree constructed so far is referred to as
the basis tree. Example 3.19 on the next page illustrates this substep.

2. In the second substep we extend the basis tree to all possible trees that
can be made from the yet unassigned root nodes in T . This is done

48 The guillotine restriction

in such a way that order equivalence is ensured: Each T ∈ T \ S is
systematically assigned values from {NULL, 1, . . . , λj}. If δ(T) = j− 1
we restrict the possible values of T further: Let Tj−1 denote the set
{T ∈ T \ S | δ(T) = j − 1} of yet unassigned nodes of depth j − 1.
Each T ∈ Tj−1, where T is before (with respect to R≥) the element
in Tj1 chosen in the first substep, is restricted to the value NULL.
Elements in Tj−1 before the element in Tj2 is restricted to values from
the set {NULL, 1}. Generally elements in Tj−1 before the element in
Tji

is restricted to values from the set {NULL, 1, . . . , i− 1 < λj}.

For T ∈ T \ Tj−1 there are no value restrictions.

As mentioned, this step ensures that order equivalent trees are only
constructed once.

Example 3.20 illustrates both this substep and the following two steps.

3. The above assignments may result in some set Tji
with |Tji

| = 1. If
such set exist the iteration is canceled and the next assignment is tried
out.

4. When the described enumeration has been made at level j, the sets Tji

induced by this enumeration is created and stored in T . In level j + 1
the enumeration is done again on this updated T and so on.

Example 3.19 Assume that we are currently at the first substep for con-
struction level 4 and T = {T07

, T12
, T31

, T32
, T33
}. If λ4 = 2 the values in

{1, 2} must be assigned the three trees of level 4 − 1 = 3 following the ex-
plained rules. There are three such assignments:

T = {T07
, T12

,
1

T31
,

2

T32
, T33
}

T = {T07
, T12

,
1

T31
, T32

,
2

T33
}

T = {T07
, T12

, T31
,

1

T32
,

2

T33
}

The three selections result in S = {T31
, T32
}, S = {T31

, T33
} and S =

{T32
, T33
} respectively. 3

Example 3.20 Assume that we are currently at the second substep for
construction level 4 and T = {T22

, T31
, T32

, T33
, T34
}. Also assume λ4 = 2 and

3.3 Tree representation 49

the fist substep selected the set S = {T32
, T34
}. Now the values {NULL, 1, 2}

can be assigned to the remaining trees in the following 6 feasible ways (NULL
values are represented by “-”):

T = {
−

T22
,

−

T31
,

1

T32
,

−

T33
,

2

T34
} T = {

−

T22
,

−

T31
,

1

T32
,

1

T33
,

2

T34
}

T = {
1

T22
,

−

T31
,

1

T32
,

−

T33
,

2

T34
} T = {

1

T22
,

−

T31
,

1

T32
,

1

T33
,

2

T34
}

T = {
2

T22
,

−

T31
,

1

T32
,

−

T33
,

2

T34
} T = {

2

T22
,

−

T31
,

1

T32
,

1

T33
,

2

T34
}

The last assignment results in the sets T41
= {T32

, T33
} and T42

= {T22
, T34
}.

For level 5 we thus get T = {T31
, T41

, T42
}. The remaining assignments are

all infeasible because they result in one or more singleton sets for level 4. 3

An assignment of all T ∈ T at level j corresponds to the construction of
all packing trees of depth j (without any assignment of cut-directions to the
branch nodes). Each feasible assignment at level k is a packing tree which
must be feasibility checked. The set (λ0, . . . , λk) has been fully checked when
all feasible assignments for all levels 0, . . . , k has been tried out systematically
with respect to this set.

50 The guillotine restriction

4 Chapter 4

Sticky cutting

The guillotine property ensures that each packing can be split into a number
of cut slices U1, . . . , Un by a number of face parallel hyper planes that cut
through the whole container. Each cutting slice may then eventually be cut
again separately – independent from the surrounding cut slices. Also the cut
slices Ui and Uj, i 6= j might have different cut directions.

Consider a guillotine cutting situation in which it is more important to
optimize for cutting speed instead of minimizing material waste. Such a situ-
ation could be a glass cutting environment where the process of partitioning
a glass sheet, splitting each cut slice apart and then remount each cut slice
again for further cutting is more expensive than making all guillotine cuts
on the same sheet at once and then just re-melt and reuse exceeding mate-
rial. A similar situation where it might pay off to make all guillotine cuts
at once is when fragile material is cut. The separating step between each
guillotine cut might damage the material and therefore it may be necessary
to minimize the amount of remounts and displacements. Yet another situa-
tion requirering such a non-splitting cutting is when mounting thin and light
weight partition walls in large halls, e.g. machine halls, fabricating shops or
engine rooms. Often such partition walls are spanning through the whole
hall and mounted on the solid and strong outer walls and they will therefore
form a grid-like division of the hall when seen from a top view.

We will in this section look at a special kind of guillotine packings where
cut slices are considered sticky. That is, all cuts must be made through the
original container and first when all cuts have been made, the individual
parts can be split apart. Figure 4.1 on the next page shows an example of
such sticky cutting for d = 2 and d = 3. It is relatively obvious that the
sticky cutting property implies worse packing than conventional guillotine
cuttings. In the following we will try to estimate this and investigate how

51

52 Sticky cutting

(a) d = 2 (b) d = 3

Figure 4.1: Example of sticky cuttings

Fekete and Schepers algorithm perform when this property is required to be
satisfied.

One immediate observation is that k = d for sticky cuttings: If k < d
we can instead reduce the problem to a k dimensional packing. Also all
packings with k > d are equivalent to k = d packings as all cuts are made by
planes through the whole original container. There are at most d such plane
orientations. The following lemma is essential for the rest of this chapter:

Lemma 4.1 For a packing p satisfying the sticky cutting property, let U be
a cut slice orthogonal to the xi-axis. For all u, v ∈ U we have (u, v) ∈ Ei or
equivalently: Gi[U] is a clique. Also, for all u ∈ U and v ∈ V \ U we have
(u, v) /∈ Ei.

Proof Without loss of generality we may assume that all p(v) are aligned
towards origin for all v ∈ V . For all u, v ∈ U we have Ii(u) ∩ Ii(v) 6= ∅
or equivalent: (u, v) ∈ Ei. If v /∈ U we have Ii(u) ∩ Ii(v) = ∅ and thus
(u, v) /∈ Ei. 2

Lemma 4.1 tells that all connected components in Gi are cliques and that
the cliques in Gi are exactly given by the cut slices along the xi-axis.

4.1 Performance

An interesting aspect is how good a solution we can find for the OBPP-d
problem when using sticky cuttings instead of guillotine cutting or unre-
stricted packings. It showed up to be difficult to prove an exact performance
ratio for bin packings satisfying the sticky cut property. Therefore this sec-

4.1 Performance 53

tion only covers a proof of a lower bound for this ratio and gives a conjecture
for an upper bound. Let OPTg and OPTs denote the number of containers
required to make a packing of V satistying the guillotine and sticky cutting
property respectively.

Lemma 4.2 For d = 2 we have OPTs

OPTg
≥ 2.

Proof Consider an instance with 1 box of size (1, n), n − 1 boxes of size
(n− 1, 1) and W = (n, n). This can be packed into a single container with a
guillotine packing. Clearly, the only way of satisfying the sticky cut property
is to pack the different box types in two separate containers. Figure 4.2 shows
this packing transformation. 2

(a) Guillotine
packing

(b) A sticky packing

Figure 4.2: Instance transformation used in proof of lemma 4.2

Now, still for d = 2, let p be an arbitrary packing and OPT the minimum
number of containers needed. The attempt to prove an upper bound for OPTs

OPT

or OPTs

OPTg
was unsuccessful. No instance with OPTs

OPTg
> 2 was ever found and

in fact it was a surprisingly hard job to find an instance having OPTs

OPT
> 2.

An instance which is not guillotine packable might be rearranged to satisfy
the sticky cut property using only the double amount of containers. E.g.
the concentric G4 instance in figure 3.3(a) on page 31 can be made sticky
cuttable by separating vertical and horizontal boxes in two containers.

Lemma 4.2 taken into account, one should expect OPTs

OPT
≤ 4 but an in-

stance with a ratio of 4 was never found. Figure 4.3 on the following page
shows an example of an instance with OPTs

OPT
= 3. Notice, that the third

container is only sparingly filled with a few “left over” boxes.

The observations are collected in the following conjecture:

Conjecture 4.3 For d = 2 we have OPTs

OPTg
= 2 and OPTs

OPT
= 4.

54 Sticky cutting

(a) (b)

Figure 4.3: The packing in 4.3(a) will use minimum 3 containers
when transformed to a sticky cutting. An example of such a transfor-
mation is seen in 4.3(b).

4.2 Behavior of sticky cuttings

Consider the decision problem OPP-d extended with the sticky cutting re-
quirement. In theorem 3.2 on page 28 we showed that OPP-d with the con-
ventional guillotine restriction was NP-hard. No such proof was ever found
for sticky cuttings but the indications are that these are also NP-hard:

Conjecture 4.4 OPP-d attached with the sticky cutting requirement is NP-
hard.

With lemma 4.1 in hand, let us take a look at P1, P2 and P3: P1 requires
all graphs to be interval graphs. According to theorem 2.8 on page 15 we need
to show that Gi does not contain a chordless C4 and G{

i is a comparability
graph. As all connected components in Gi are cliques, the graph clearly has
no chordless C4. According to theorem 2.9 on page 17 G{

i is a comparability
graph if and only if it does not contain any odd 2-chordless cycle. Assume
that G{

i indeed contains such a cycle Cn = {0, . . . , n − 1} of length n > 4.
Gi ∪ G{

i is always complete and thus, if the edge (u, v) is a 2-chord for Cn

we must have (u, v) /∈ E{
i and (u, v) ∈ Ei. All these 2-chord edges form

a connected subgraph of Gi which is not a clique. This is a contradiction
implying that G{

i must be a comparability graph after all. In our situation,
where all connected components are cliques, we have now shown that P1 is
always satisfied removing the need for verifying this property in any branch.

P2 requires every stable set to be xi-feasible. Consider a cutting stage
orthogonal to the xi-axis, resulting in the cut slices U1, . . . , Un. As all cuts
are made through the whole container, no successing stage will cut any of
the cut slices further by planes orthogonal to the xi-axis. Thus, the xi-width
of a cutting slice must equal the max width of any of its elements. By

4.2 Behavior of sticky cuttings 55

summarizing each cut slice width the xi-width of the whole packing can be
found:

∑

C clique in Gi

max
v∈C

wi(v)

With an appropriate data structure this can be calculated in O(V) time.
This is a speed improvement compared to the O(dk|V |2) complexity of the
dissolvement based measurement described for guillotine cuttings in section
3.2.

An interesting issue is how to handle infeasible stable sets. If a packing
is xi-infeasible let

M = {v | wi(v) = max
v∈C

wi(v) and C clique in Gi}

be a set containing the xi-widest box from each cut slice of Gi. The edge
set M induces a maximal weighted infeasible clique E {

+,i. We branch on each

edge from E{
+,i[M] \ E−,i. If this set is empty the graph cannot be made

xi-feasible: Drop the branch.

P3 is ensured as in the conventional case by considering ∩d
i=1E+,i.

The sticky cutting property does not only influence on the handling of P1
and P2. Lemma 4.1 also implies an additional rule for argumenting E− and
E+: Let C be a clique in Gi and consider the augmentation (e, σ, i) where
e = (u, v). If v ∈ C and u /∈ C also the augmentation (f, σ, i) should be
made for all f = (u, v′) where v′ ∈ C . In other words: For sticky cuttings the
concept of augmenting edges is replaced by the concept of joining cliques.

The solution space for sticky cuttings are smaller than for guillotine pack-
ings and sticky cuttings will also generally make worse packings as described
in section 4.1. However, as widths can be measured in linear time and the
clique representation will always result in topologically feasible sticky cut-
tings more sticky cutting nodes can be processed per second than for guil-
lotine packings. Hence we may hope that we obtain comparable solutions
by searching larger parts of the solution space. In open problem 3.11 on
page 38 we ask if the dissolvement technique increases the total complexity
for guillotine packings even though the complexity for each iteration has been
decreased drastically. A similar question can be asked for the clique merging
algorithm for sticky cuttings: Each clique configuration in a set of graphs
Gi = E+,i will occur in numerous search nodes and the computational results
shown in chapter 5 render probable that the time used in these redundant
search nodes surpass the time gained by reducing the complexity of each
iteration.

56 Sticky cutting

4.2.1 Further reduction of the search space

Consider a first-stage cut slice U orthogonal to the xi-axis. The cut slice
dimensions will then equal the container dimensions except for dimension xi

where it will equal the size of the xi-widest box in the slice. If another cut
slice from the xi-orthogonal cut is merged to U (the two cliques representing
the cut slices are joined) the resulting cut slice size will remain unchanged
except at dimension xi where the width will equal the new xi-widest box. If
v ∈ V is the xi-widest box in V then clearly no xi-orthogonal cut slice will
be xi-wider than wi(v).

Let V denote the volume of the largest possible xi-orthogonal feasible cut
slice: V = W1W2 · · ·wi(v) · · ·Wd. If the summarized volume of the boxes
in an arbitrary xi-orthogonal cut slice exceeds V then no augmentation can
ever make the search node feasible and the node can therefore be dropped.

4.3 The special case d = 2 and k = 2

As we will see in this section the sticky cutting benefits can be utilized in
Fekete and Schepers branch-and-bound algorithm for conventional guillotine
packings in the special case d = 2 and k = 2. The key observation is the
following: Assume again that for all p(v), v ∈ V that p(v) is aligned to origin.
Lemma 4.1 ensures that for each first-stage cut slice U the boxes in U form
a clique in Gα1

and also the cliques containing u and v are disconnected
if u and v are placed in different fist-stage cut slices. The first-stage cut
slices and second-stage cut slices of each first-stage cut slice may be freely
permuted without affecting feasibility. Therefore, for this special case, it
is sufficient to know how V is distributed into the the first-stage cut slices
in order to determine feasibility. I other words: Gα1

holds all information
needed making Gα2

superfluous. In order to verify feasibility it is sufficient
to verify the following:

1. For each first-stage slice, the height1 of all boxes does not exceed the
container height: For each clique C in Gα1

,

∑

v∈C

wα2
(v) ≤ Wα2

2. The sum of each first-stage slice widths does not exceed the container
width. Each slice is exactly as wide as the widest box it contains so we

1The words “height” and “width” may be exchanged depending of the value of α1

4.3 The special case d = 2 and k = 2 57

need to check:
∑

C clique in Gα1

max
v∈C

wαl
(v) ≤ Wαl

Like in sticky cuttings, the P1 property is automatically satisfied in this
case as all connected components are cliques. Furthermore P3 is trivially
satisfied as we only consider a single graph, Gα1

.

So for the case d = 2 and k = 2 we can boost each iteration in the
branch-and-bound algorithm even further.

58 Sticky cutting

5 Chapter 5

Computational results

Some of the ideas presented for guillotine packings (GP) described in chapter
3 and the sticky cuttings (SC) described in chapter 4 have been implemented
and run on a number of instances. This chapter presents and discusses the
computational results obtained.

The source code can be found at the following URL:

http://resen.org/~rra/pub/mastersource.tgz

5.1 Strategy

The following two OPP-d algorithms have been implemented:

• A GP solver based on the polynomial time dissolvement technique for
measuring and clique finding described in chapter 3. Dissolvements are
tried out in the order 1, . . . , d as suggested and this implementation
does not require P1 to be satisfied.

• A SC solver, exactly as described in chapter 4, including the bound
described in section 4.2.1 on page 56.

Both solvers was first tested on a small set of handpicked instances with
various specific properties. These instances are described in section 5.1.1 on
the following page. The solvers were moreover tested on a larger set of 11400
systematically created instances for various values of d, |V | and Vb

Vc
where Vb

and Vc are the total box- and container volume, respectively. All the latter
instances are guaranteed to be feasible. For each tuple (T, d, |V |, Vb

Vc
) where

T is a packing type (e.g. guillotine or sticky) a set of 20 instances has been
randomly created with 20 different random seeds. Notice that the instances

59

60 Computational results

created for GP are different from the SC instances as they have different
requirements to satisfy in order to be feasible. The instance generator used
is available as part of the source code.

For comparison reasons it was considered to test the solvers against a
set of well known instances but no such instances was found for the decision
problem for guillotine packings. For obvious reasons, no instances were found
for SC packings either. One solution was to use the OPP-d solvers as part of
an OBPP-d solver and run the modified OBPP-d solver on some of the many
available instances for OBPP-d. But in order to use the results obtained for
comparison with other OPP-d solvers, these solvers would also need to be
tested by using them as part of the exact same OBPP-d solver. Due to the
fact that the instance generator used is public available and provides OPP-d
instances for both GP and SC, it was therefore estimated that it was more
relevant by using only the systematic tests described above.

The implemented GP solver was furthermore tested against a state-of-the-
art solver in order to give a picture of its “absolute” performance. The best
GP solver found was an implementation of a CSP based OPP-2 algorithm
[PS02] which is also described in section 6.3.3. As no other implementation
of SC solvers currently exist, it has not been possible to compare the present
SC solver implementation with any similar solvers.

5.1.1 Handpicked instances

The handpicked instances have been specifically constructed in order to test
the behavior of the algorithms in different kinds of extreme situations. Below
we describe each class of instances in more detailes.

2dunique8, 2dunique16 and 3dunique16 These instances have only one
unique solution except for mirror symmetry. They are therefore ex-
pected to be rather hard to solve. All of them are guillotine packable
but not sticky cuttable.

2dsquare25, 2dsquare100 and 3dsquare8 Another attemt to test the
limits of the solvers was to create these three instances with the general
form of a square grid in 2 and 3 dimensions with cells (boxes) of unit
sizes. That is, for d = 2 and n ∈ {5, 10} there are n2 boxes of size (1, 1)
in a container size of (n, n). For d = 3 there are 23 = 8 boxes of size
(1, 1, 1) in a container size of (2, 2, 2).

2dinf7, 2dinf8, 3dinf8, 3dinf300 Four nontrivially guillotine-infeasible in-
stances. That is, the infeasibility is caused by existence of a nonbreak-

5.2 Implementation 61

able blocked ring and not by insufficient container volume. The in-
stances consist of a large container, some small boxes and a blocked
ring induced by two boxes of size (W1 − 1, 1) and two boxes of size
(1, W2−1) for the case d = 2 and three boxes of size (W1, 1, 1), (1, W2, 1)
and (1, 1, W3) for the case d = 3. The latter blocked ring is depicted as
the left part of figure 3.2(b) on page 29. As none of the algorithms will
occasionally find any feasible solution, the size of the solution space is
expected to play a large role in the execution time.

nxty These instances are created by the test environment from the CSP
solver. Their purpose is to give an idea of how the solvers perform on
the “home ground” for the CSP solver.

5.2 Implementation

Both solvers were implemented using C++ with extensively use of the Stan-
dard Template Library (STL). In order to represent sets of nodes with both
fast lookup, insertion and random deletion the stl::hash_set container was
used. Both the lookup and deletion operations have a complexity of O(1)
and if no rehashing is needed also the insertion takes O(1). Where maps
from an identifier to a larger data structure was needed the associative con-
tainer stl::hash_map was used in order to obtain the same direct access
performance as for sets. For queue-like data structures and in cases where
random deletion was not required the container std::vector was used. The
std::vector has a constant time index-operator and provides constant time
insertion and deletion of elements at the end.

Section 5.4.2 on page 76 explores the implementation by analyzing a set of
runs with the tool gprof. As the section describes, the practical performance
of the STL hash structures is surprisingly slow for the small data sets used in
our case. It was therefore decided to test an additional implementation using
another kind of data structures. The section gives a more detailed motivation
for this experiment and also describes the new data structures used. The
two implementations will be referred to as hash and static respectively in the
figures showing the results optained.

5.3 Results

The source code was compiled with g++ 4.0.2 and run on a machine with
a 2170 MHz AMD Athlon XP 2600+, 512 MB ram and a Linux installation

62 Computational results

with kernel 2.6.11.8.

5.3.1 Handpicked instances

Figure 5.1 and 5.2 shows the computational results for the runs performed
on the handpicked instances. The timeout was set to 300 seconds. Below

Guillotine solver CSP Sticky cutting solver

Instance d |V | Vb

Vc
Feas.? Nodes Sec. Sec. Feas.? Nodes Sec.

2dunique8 2 8 1.00 Yes 12 0.00 0.00 No 6525 0.7
2dunique16 2 16 1.00 Yes 53 0.05 0.00 No - >300
2dsquare25 2 25 1.00 Yes - >300 0.00 Yes 139 0.24
2dsquare100 2 100 1.00 Yes - >300 63.00 Yes 1079 2.95
2dinf7 2 7 0.04 No 9673 2.93 0.00 No 3301 0.35
2dinf8 2 8 0.04 No 192961 61.8 0.00 No 16547 1.93
n20t21 2 20 0.35 Yes 68 0.04 0.02 ? - >300
n29t21 2 29 0.40 Yes 79 0.08 0.17 ? - >300
n18t22 2 18 0.59 Yes 64 0.04 0.01 ? - >300
n10t23 2 10 0.57 Yes 33 0.01 0.00 Yes 516763 73.32

Figure 5.1: Computational results for the handpicked instances for
d = 2 and a timeout of 300 seconds. The table colums are divided in
four main sections: 1) Common instance data, e.g. number of boxes
|V | and volume percentage Vb

Vc
, 2) results for the GP solver, 3) runtimes

for the same instances solved by the CSP solver and 4) results for the
SC solver. Feas.? tells if the instance is feasible for that type of
packing, Nodes is the number of search nodes visited and Sec. is the
number of seconds used for solving the instance.

Guillotine solver Sticky cutting solver

Instance d |V | Vb

Vc
Feas.? Nodes Sec. Feas.? Nodes Sec.

3dunique16 3 16 0.90 Yes 36 0.05 No - >300
3dsquare8 3 16 1.00 Yes - >300 Yes 11733 1.72
3dinf8 3 8 0.00 No 1 0.00 No 13049 1.76
3dinf300 3 300 0.48 No 1 0.05 No - >300

Figure 5.2: Results for handpicked instances for d = 3.

we list some observations.

1. The CSP solver outperforms both the GP and SC solver on most in-
stances.

2. For the nxty instances the GP solver almost matches the CSP solver
and it even performs better on the n29t21 instance.

3. Declaring an instance infeasible is generally harder than finding a so-
lution: There might be several feasible solutions to an instance, but

5.3 Results 63

in order to declare it infeasible either a good bound must be used or
a potentially large search space has to be investigated more or less
throughout. The search space for sticky cuttings are smaller than for
guillotine packings and as more nodes can be handled per second this
may explain why the SC solver outperforms the GP solver in 2dinf7
and 2dinf8. For d = 2 the CSP solver is still fastest though. For
d = 3 the GP solver discovers the unbreakable blocked ring in 3dinf8
and 3dinf300 very fast. The latter instance, having |V | = 300 and a
box/container volume ratio of 0.48 was declared infeasible in just 0.05
seconds.

4. The SC solver generally performs well on the “square” instances, com-
pared to the GP solver. It even outperforms the CSP solver in the
2dsquare100 instance. The square instances are characterized by hav-
ing a large amount of symmetry: The packings can be permuted in
numerous ways because of the many equally sized boxes.

5. The SC solver seems to meet increased difficulties for most instances
at d = 3. One exception is the 3dsquare8 instance which was solved in
1.72 seconds on the SC solver but stayed unsolved by the GP solver.

The handpicked instances are all somewhat extreme except for the nxty
instances and does not give an objective picture of the solvers (because they
were handpicked). So even though the above observations suggest some char-
acteristics of the solvers a much larger set of test instances must be solved in
order to provide a trustworthy characterization of their average performance.
Section 5.3.2 below describes the results obtained by a more exhaustive in-
vestigation.

5.3.2 Systematically created instances

In this section we present the results from a set of 11400 systematically cre-
ated instances and examine if some of the tendencies seen for the handpicked
instances also hold in the general case. Each parameter set (T, d, |V |, Vb

Vc
)

where T ∈ {guillotine/hash, guillotine/static, sticky/hash, sticky/static, CSP}
was tested against 20 randomly created instances matching these parameters
and each number or curve-point presented in this section is therefore based
on 20 test runs.

A timeout was given for all executions. In order to determine an ap-
propriate threshold a number of initial test runs were made with a relatively
high timeout limit. It appeared that the execution times were far from evenly

64 Computational results

distributed: For most runs, either the execution timed out or a solution was
found in only a few seconds. It also turned out that the threshold for diver-
gence in execution time increased with d. Based on these observations the
following timeout thresholds were decided:

d 2 3 4
Seconds 6 20 30

Each figure in this section shows the percentage of runs exceeding the
timeout threshold and the average execution time for the runs that did not
time out. The tables also show the average number of search nodes visited.

Hash versus static structures

Figure 5.3 on the facing page shows a number of graphs depicting the time-
out percentage (dashed curve) and average execution time (solid curve) for
the two GP solver implementations for d = 2 and |V | running from 4 to 30.
Each graph shows data for a specific value of Vb

Vc
. The table in figure 5.4 on

page 66 shows a subset of the execution and marks the best execution time
in each row with bold. With respect to the timeout ratio, the two implemen-
tations are relatively even. The implementation using static data structures,
however has a slightly less ratio than the hash based implementation. Still
it might happen that the former implementation terminates before the latter
on isolated instances: The constructor for the static sized data structure is
relatively time consuming so an instance for which disproportionately many
creations of the structures are done compared to how much they are actually
utilized (updated or indexed into) might perform better with hashing based
structures.

The average execution times and number of search nodes visited for the
runs that did not time out are generally best for the implementation using
static structures. The average number of search nodes visited per second was
roughly 400 for the hash based implementation and 1100 for the static based.
However, for isolated instances the average execution time is largest for the
latter, e.g. for Vb

Vc
= 40 and |V | = 18. This can be explained by the timeout

ratio for these cases: If an instance is solved by one implementation but is
timing out on the other, the (large) execution time will increase the average
execution time for the former but not influence on the average for the latter.
Thus, this situation might distort the picture of the actual performance.

The graphs in figure 5.5 on page 67 and the table in figure 5.6 on page 68
compares the two implementations for the sticky cutting solver for d = 2.
The two implementations of the SC solver share the same characteristics as

5.3 Results 65

Hash data structures Static data structures
gui/hash, d = 2, Vb/Vc = 20%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� �� �� �� �� �� �� �� �� �� �� �� ��������� ��� � � � � �
� �
�

gui/static, d = 2, Vb/Vc = 20%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� �� �� �� �� �� �� �� �� �� �� �� ����������������� ��� � � � �

gui/hash, d = 2, Vb/Vc = 40%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�	 �	 �	
�	
�	

�	
�	 �	

�	
�	

�	
�	 �	
�	

�
�

�

gui/static, d = 2, Vb/Vc = 40%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� ��
��
��

��
��
��

��
��

��
�� ��
��

���� �

gui/hash, d = 2, Vb/Vc = 60%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� ��
��

��
�� ��

��
��

��

��

��

��
��

� � � � �
�

� �
�

� �
� �

�

gui/static, d = 2, Vb/Vc = 60%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� �� ��

��

��
��

��
��

��
��

��

�� ��

��� �
�
�

�

�
� �
�

� � �
�

gui/hash, d = 2, Vb/Vc = 80%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� ��
��

��

��
��

��

��
��
��
�� ��
��
��

���
�

�

� � �
�
�
�

�

�

� �

gui/static, d = 2, Vb/Vc = 80%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� ��

��

��
��

��
��

��
��
�� ��
�� ��

���
� � �

�

�

�
� �
�
� �

�

gui/hash, d = 2, Vb/Vc = 100%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� ��

��

��

��
�� �� �� �� �� �� �� ��

� � �

�

�

�

gui/static, d = 2, Vb/Vc = 100%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� ��

��

��

��

�� �� �� �� �� �� �� ��

��� �
�
�

�

Figure 5.3: Computational results for the two guillotine packing
solver implementations for d = 2 with a timeout of 6 seconds. The
number if boxes |V | is shown horizontaly. The curves show the per-
centage of runs timing out after 6 seconds (dashed) and the average
runtime in seconds for the runs that did not time out (solid). Left
(right) column shows results for the algorithm using hashing (static)
data structures. Vb/Vc is the ratio between the total box- and container
volume.

66 Computational results

Hash Static
Vb

Vc

|V | #Nodes Timeouts Sec. #Nodes Timeouts Sec.

20 6 2 0.0% 0.000 2 0.0% 0.000
20 12 4 0.0% 0.004 4 0.0% 0.000

20 18 10 0.0% 0.026 10 0.0% 0.002

20 24 25 0.0% 0.095 25 0.0% 0.015

20 30 55 0.0% 0.283 55 0.0% 0.043

40 6 2 0.0% 0.000 2 0.0% 0.000
40 12 11 10.0% 0.016 11 10.0% 0.002

40 18 72 25.0% 0.150 666 20.0% 0.291
40 24 74 50.0% 0.290 74 50.0% 0.054

40 30 196 50.0% 1.056 196 50.0% 0.203

60 6 19 0.0% 0.009 19 0.0% 0.004

60 12 38 25.0% 0.051 1284 15.0% 0.510
60 18 399 50.0% 0.666 1458 45.0% 0.613

60 24 265 55.0% 0.718 1077 45.0% 0.570

60 30 328 55.0% 1.347 328 55.0% 0.257

80 6 4 0.0% 0.001 4 0.0% 0.000

80 12 112 55.0% 0.138 703 50.0% 0.286
80 18 106 80.0% 0.237 664 75.0% 0.376
80 24 614 85.0% 1.620 614 85.0% 0.340

80 30 312 95.0% 1.220 1437 90.0% 1.275
100 6 5 0.0% 0.001 5 0.0% 0.000

100 12 1544 60.0% 1.775 1544 60.0% 0.544

100 18 – 100.0% – – 100.0% –
100 24 – 100.0% – – 100.0% –
100 30 – 100.0% – – 100.0% –

Figure 5.4: Results for the guillotine packing solvers for d = 2 with a
timeout of 6 seconds. The column #Nodes holds the average number
of search nodes visited for the runs that did not time out. The best
average execution time is marked with bold.

5.3 Results 67

Hash data structures Static data structures
sticky/hash, d = 2, Vb/Vc = 20%

4 6 8 10 12 14
0 0.0%

1 16.7%

2 33.3%

3 50.0%

4 66.7%

5 83.3%

6 100.0%

�� �� �� �� �� ��
��

��
��

��
��

����������� ��� � ���

sticky/static, d = 2, Vb/Vc = 20%

4 6 8 10 12 14
0 0.0%

1 16.7%

2 33.3%

3 50.0%

4 66.7%

5 83.3%

6 100.0%

�� �� �� �� �� ��
��

��

��

��
��

�������������
�
� ���

sticky/hash, d = 2, Vb/Vc = 40%

4 6 8 10 12 14
0 0.0%

1 16.7%

2 33.3%

3 50.0%

4 66.7%

5 83.3%

6 100.0%

�	 �	 �	

�	

�	

�	

�	

�	 �	

�	 �	

�
�
�

sticky/static, d = 2, Vb/Vc = 40%

4 6 8 10 12 14
0 0.0%

1 16.7%

2 33.3%

3 50.0%

4 66.7%

5 83.3%

6 100.0%

�� �� ��
��
��

��

��

��
��

�� ��

��

sticky/hash, d = 2, Vb/Vc = 60%

4 6 8 10 12 14
0 0.0%

1 16.7%

2 33.3%

3 50.0%

4 66.7%

5 83.3%

6 100.0%

�� �� ��

��

��

��

��
�� ��
�� ��

� � �

�

�

�

� ���

sticky/static, d = 2, Vb/Vc = 60%

4 6 8 10 12 14
0 0.0%

1 16.7%

2 33.3%

3 50.0%

4 66.7%

5 83.3%

6 100.0%

�� �� �� ��

��

��

��

�� ��
�� ��

��� �

� �

�

�

���

sticky/hash, d = 2, Vb/Vc = 80%

4 6 8 10 12 14
0 0.0%

1 16.7%

2 33.3%

3 50.0%

4 66.7%

5 83.3%

6 100.0%

�� �� ��
��

��

��

��

�� �� �� ��

��� �

�

�
�

�

sticky/static, d = 2, Vb/Vc = 80%

4 6 8 10 12 14
0 0.0%

1 16.7%

2 33.3%

3 50.0%

4 66.7%

5 83.3%

6 100.0%

�� �� �� ��

��

��

��

�� �� �� ��

��� �
�

�
�

�

sticky/hash, d = 2, Vb/Vc = 100%

4 6 8 10 12 14
0 0.0%

1 16.7%

2 33.3%

3 50.0%

4 66.7%

5 83.3%

6 100.0%

�� �� �� ��

��

��

��

�� �� �� ��

� � �
�

�

�

�

sticky/static, d = 2, Vb/Vc = 100%

4 6 8 10 12 14
0 0.0%

1 16.7%

2 33.3%

3 50.0%

4 66.7%

5 83.3%

6 100.0%

�� �� �� �� ��

��

��

��
�� �� ��

��� � �

�

�

�

�

Figure 5.5: Computational results for the two sticky cutting solver
implementations for d = 2 with a timeout of 6 seconds.

68 Computational results

Hash Static
Vb

Vc

|V | #Nodes Timeouts Sec. #Nodes Timeouts Sec.

20 4 2 0.0% 0.000 2 0.0% 0.000
20 6 3 0.0% 0.000 3 0.0% 0.000
20 8 5 0.0% 0.000 5 0.0% 0.000
20 10 7 5.0% 0.004 7 5.0% 0.000

20 12 51 25.0% 0.041 51 25.0% 0.007

20 14 11 40.0% 0.018 11 40.0% 0.000

40 4 5 0.0% 0.000 5 0.0% 0.000
40 6 657 0.0% 0.256 657 0.0% 0.063

40 8 786 25.0% 0.407 2996 10.0% 0.351

40 10 339 65.0% 0.230 3454 60.0% 0.498
40 12 15 80.0% 0.015 15 80.0% 0.000

40 14 13 90.0% 0.020 13 90.0% 0.000

60 4 8 0.0% 0.001 8 0.0% 0.000

60 6 304 0.0% 0.117 304 0.0% 0.028

60 8 2436 25.0% 1.239 4177 20.0% 0.491

60 10 14 90.0% 0.010 5980 85.0% 0.813
60 12 26 95.0% 0.020 26 95.0% 0.000

60 14 – 100.0% – – 100.0% –
80 4 9 0.0% 0.001 9 0.0% 0.000

80 6 201 0.0% 0.078 201 0.0% 0.017

80 8 2842 35.0% 1.438 7297 15.0% 0.852

80 10 5458 90.0% 3.675 20807 70.0% 2.647

80 12 – 100.0% – – 100.0% –
80 14 – 100.0% – – 100.0% –

100 4 8 0.0% 0.000 8 0.0% 0.000
100 6 98 0.0% 0.035 98 0.0% 0.008

100 8 1455 20.0% 0.721 6097 0.0% 0.701

100 10 1890 80.0% 1.147 22684 45.0% 2.955
100 12 – 100.0% – – 100.0% –
100 14 – 100.0% – – 100.0% –

Figure 5.6: Results for the sticky cutting solvers for d = 2 with a
timeout of 6 seconds.

5.3 Results 69

the GP implementations: In general, the implementation using static struc-
tures performed better with smaller timeout ratio and faster execution times.
The average number of search nodes visited per second was roughly 1500 for
the hash based implementation and 5200 for the static based. As for the GP
solvers, the hash based implementation has smallest average execution time
for isolated instances but this can be explained as above.

The implementation based on static data structures generally performs
best, all tests on higher-dimensional instances are therefore done on this
implementation only.

The GP solver

In this section we take a closer look at the results for the GP solver. Consider
the graphs in the right column of figure 5.3 on page 65 showing execution data
for d = 2. For the small volume percentage Vb

Vc
= 20% the solver handles all

given instance sizes without any difficulties. As Vb

Vc
increases the problems be-

come more difficult to solve as it leaves less tolerance for the box placements.
The difficulties are reflected in increased timeout ratio (the termination time
for the instances that did not time out is relatively constant). The volume
percent has a big influence on the performance, as seen, and it seems that the
influence can be divided in three phases: Increment in the volume percentage
from either a small or a high value has a large influence on the timeout ratio.
This can be seen in the increment from 20% to 40% and the increment from
80% to 100%. In the middle section the volume percentage does not affect
the timeout ratio significantly. This can be seen in the increase from 40% to
60%.

For Vb

Vc
= 80% there is a slight drop in the timeout ratio for large |V |.

This might be explained by a “fortunate” combination of |Vb

Vc
| and |V |: If a

small set of large |V |-values detects infeasible search nodes a bit earlier for
that specific value of Vb

Vc
then the total execution time will benefit from this

and the timeout ratio therefore decrease.

Figure 5.7 on the next page shows computational results for the GP solver
for d = 3 and d = 4. The tests on the higher-dimensional instances have some
of the same characteristics as in the two-dimensional case. The problems are
clearly harder to solve though: For small values of Vb

Vc
and even for small

|V | the timeout ratio is relatively high. Also the slope of the timeout ratio
curve is steeper than for d = 2. However, for d = 3 the influence of Vb

Vc
is less

significant than for d = 2 and for d = 4 the timeout ratio is almost unaffected
of the volume percentage.

70 Computational results

gui/static, d = 3, Vb/Vc = 20%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 25.0%

2 50.0%

3 75.0%

4 100.0%

�� �� ��
��
��
��

��

��

��

��
��
�� ��

��

��� ���

�

� �

�

� � � �
� �

gui/static, d = 3, Vb/Vc = 40%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 25.0%

2 50.0%

3 75.0%

4 100.0%

�� �� ��

��

��

��

��

��

��

��

�� �� �� ��

��� � �

�

�
� �
� �

gui/static, d = 3, Vb/Vc = 60%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 25.0%

2 50.0%

3 75.0%

4 100.0%

�� �� ��

��
��

��

��

��

��
��
��
�� �� ��

	�	 	 	

	

	

	 	

	

	 	

gui/static, d = 3, Vb/Vc = 80%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 25.0%

2 50.0%

3 75.0%

4 100.0%

�
�
�

�

�

�

�

�
�
�
�
�
�
�

��� �

�
�

�

�

(a) Results for d = 3. Timeout threshold: 20 seconds.

gui/static, d = 4, Vb/Vc = 20%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

2 25.0%

4 50.0%

6 75.0%

8 100.0%

� � � �

�

�

�

�

�

�
�
� � �

�����

�
�

�

� �

�

� � ���
�

gui/static, d = 4, Vb/Vc = 40%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

2 25.0%

4 50.0%

6 75.0%

8 100.0%

�� �� �� ��

��

��

��

��

��
��

�� ��
��
��

��� � �
� �

�

�

�

� ��� � �

gui/static, d = 4, Vb/Vc = 60%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

2 25.0%

4 50.0%

6 75.0%

8 100.0%

�� �� �� ��

��

��

�� ��

��

�� �� �� �� ��

��� � �

�
� �

�

�

gui/static, d = 4, Vb/Vc = 80%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

2 25.0%

4 50.0%

6 75.0%

8 100.0%

�� ��
�� ��

��

��

��

��
��

��
�� �� �� ��

��� � �
�

�

�

�

�

�

(b) Results for d = 4. Timeout threshold: 30 seconds.

Figure 5.7: Execution data for the guillotine solver for d = 3 and
d = 4.

5.3 Results 71

Also, it is interesting that for Vb

Vc
= 80% the solver is able to solve instance

with |V | = 16 for d = 3 but instances with |V | = 22 for d = 4.

Comparison to state-of-the-art

As mentioned, the dissolvement based GP solver was compared to a state-
of-the-art solver, more specifically an implementation of a CSP based OPP-
2 algorithm [PS02]. Figure 5.8 on the following page and 5.9 on page 73
shows the results obtained. A few instances where solved fastest by the
dissolvement based solver but in general it was outperformed by the CSP
solver. As seen, the timeout ratio for the latter is low compared to the
former. In section 3.2.2 on page 33 we discussed pros and cons of purely
utilizing the dissolvement technique for determining the packing topology. It
seems that the redundancy induced by this technique has a bad influence on
the total performance. Section 5.4 on page 75 investigates the performance in
more details from a retrospective point-of-view and suggest how to improve
it in various ways.

The SC solver

Consider the graphs in the right column of figure 5.5 on page 67 showing
execution data for the SC solver for d = 2. Despite that each iteration in the
SC solver is faster compared to the GP solver1, the former generally performs
worse than the latter: Compared to the GP solver, high timeout ratios are
achived for a smaller volume percentage Vb

Vc
and divergence occur for smaller

|V |. Section 4.2 suggests that the increased redundancy in the representation
of clique configurations might increase the total execution time, despite the
low complexity of each iteration. This seems to be the case.

Figure 5.10 on page 74 shows computational results for the SC solver
for d = 3 and d = 4. Except for the worse performance, compared to
the GP solver, the two solvers share the same characteristics: The timeout
ratio increases with Vb

Vc
and |V |. Also, the influence of the volume percentage

decrease for larger d. As for the GP solver the curve showing the the timeout
ratio is steeper for the higher-dimensional instances than for d = 2.

11100 nodes/s for the GP solver versus 5200 nodes/s for the SC solver as mentioned
earlier

72 Computational results

No hash, dissolvement solver CSP solver
gui/static, d = 2, Vb/Vc = 20%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� �� �� �� �� �� �� �� �� �� �� �� ������������������� � � � � �

gui/csp, d = 2, Vb/Vc = 20%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� �� �� �� �� �� �� �� �� �� �� �� ��������������� � � � � � �
�

gui/static, d = 2, Vb/Vc = 40%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�	 �	 �	
�	
�	

�	
�	
�	

�	
�	

�	
�	 �	
�	

�
�
�
�

�

gui/csp, d = 2, Vb/Vc = 40%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� �� �� �� �� �� �� �� �� �� �� �� �������

gui/static, d = 2, Vb/Vc = 60%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� �� ��

��

��
��

��
��

��
��

��

�� ��

� ���
�
�

�

�
� �
�

� � �
�

gui/csp, d = 2, Vb/Vc = 60%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� �� �� �� �� �� �� �� �� �� �� �� ������������� � � � � � �
� �

gui/static, d = 2, Vb/Vc = 80%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� ��

��

��
��

��
��

��
��
�� ��
�� ��

���
� � �

�

�

�
� �
�
� �

�

gui/csp, d = 2, Vb/Vc = 80%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� �� �� �� �� �� ��
��
��
�� �� ��

��

������� � � � � � � �
�
� �

gui/static, d = 2, Vb/Vc = 100%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� ��

��

��

��

�� �� �� �� �� �� �� ��

��� �
�
�

�

gui/csp, d = 2, Vb/Vc = 100%

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 0.0%

1 20.0%

2 40.0%

3 60.0%

4 80.0%

5 100.0%

�� �� �� �� ��

��

��

��

��

��
��

�� �� ��

����� � �
�

�

�

�

�
�

Figure 5.8: A comparison beween the dissolvement based and the
CSP based solver for OPP-2.

5.3 Results 73

Diss. solver CSP solver
Vb

Vc

|V | Timeouts Sec. Timeouts Sec.

20 6 0.0% 0.000 0.0% 0.000
20 12 0.0% 0.000 0.0% 0.000
20 18 0.0% 0.002 0.0% 0.012
20 24 0.0% 0.015 0.0% 0.057
20 30 0.0% 0.043 0.0% 0.178
40 6 0.0% 0.000 0.0% 0.000
40 12 10.0% 0.002 0.0% 0.000

40 18 20.0% 0.291 0.0% 0.013

40 24 50.0% 0.054 0.0% 0.065
40 30 50.0% 0.203 0.0% 0.219
60 6 0.0% 0.004 0.0% 0.000

60 12 15.0% 0.510 0.0% 0.000

60 18 45.0% 0.613 0.0% 0.015

60 24 45.0% 0.570 0.0% 0.071

60 30 55.0% 0.257 0.0% 0.242

80 6 0.0% 0.000 0.0% 0.000
80 12 50.0% 0.286 0.0% 0.030

80 18 75.0% 0.376 0.0% 0.014

80 24 85.0% 0.340 5.0% 0.071

80 30 90.0% 1.275 10.0% 0.256

100 6 0.0% 0.000 0.0% 0.000
100 12 60.0% 0.544 0.0% 0.091

100 18 100.0% – 60.0% 1.569

100 24 100.0% – 90.0% 0.160

100 30 100.0% – 100.0% –

Figure 5.9: A comparison beween the dissolvement based and the
CSP based solver for OPP-2.

74 Computational results

sticky/static, d = 3, Vb/Vc = 20%

4 6 8 10 12 14
0 0.0%

4 20.0%

8 40.0%

12 60.0%

16 80.0%

20 100.0%

�� �� ��

��

��

��
�� �� ��

�� ��

� �
�

� �
�

� � �

sticky/static, d = 3, Vb/Vc = 40%

4 6 8 10 12 14
0 0.0%

4 20.0%

8 40.0%

12 60.0%

16 80.0%

20 100.0%

�� �� ��

��

��
��

�� �� �� �� ��

� �
�

�

�

�

sticky/static, d = 3, Vb/Vc = 60%

4 6 8 10 12 14
0 0.0%

4 20.0%

8 40.0%

12 60.0%

16 80.0%

20 100.0%

�� �� ��

��

��

��

�� �� �� �� ��

� �
�

�

� �

sticky/static, d = 3, Vb/Vc = 80%

4 6 8 10 12 14
0 0.0%

4 20.0%

8 40.0%

12 60.0%

16 80.0%

20 100.0%

	
 	
 	
 	

	

	

	

	
 	
 	
 	

��� �

�

�
�

�

(a) Results for d = 3. Timeout threshold: 20 seconds.

sticky/static, d = 4, Vb/Vc = 20%

4 6 8 10 12 14
0 0.0%

5 16.7%

10 33.3%

15 50.0%

20 66.7%

25 83.3%

30 100.0%

� � �

�

�

�
�
� � � �

� �

�

�

�

�

�

sticky/static, d = 4, Vb/Vc = 40%

4 6 8 10 12 14
0 0.0%

5 16.7%

10 33.3%

15 50.0%

20 66.7%

25 83.3%

30 100.0%

�� �� ��

��

��

��
�� �� �� �� ��

� �

�

�

�

�

sticky/static, d = 4, Vb/Vc = 60%

4 6 8 10 12 14
0 0.0%

5 16.7%

10 33.3%

15 50.0%

20 66.7%

25 83.3%

30 100.0%

�� �� ��

��

��

�� ��
�� �� �� ��

� �
�

�
�

�

�

sticky/static, d = 4, Vb/Vc = 80%

4 6 8 10 12 14
0 0.0%

5 16.7%

10 33.3%

15 50.0%

20 66.7%

25 83.3%

30 100.0%

�� �� ��

��

��

��
��
�� �� �� ��

� �
�

�

�

�

�

(b) Results for d = 4. Timeout threshold: 30 seconds.

Figure 5.10: Execution data for the sticky solver for d = 3 and d = 4.

5.4 Investigating the performance 75

5.4 Investigating the performance

In order to investigate the bottlenecks of both solvers, we examine purely
algorithmic and purely implementational aspects.

5.4.1 Algorithmic considerations

In this section we describe some ideas on how to improve the performance
by making purely algorithmic modifications.

Modifying the model

Slacking the requirement for P1 as described in section 3.2.3 removes an
overhead of finding and preventing the existence of certain holes. This speeds
up each iteration but also increases the search space. If the time reduction
gained from dropping the requirement for P1 is exceeded by the time used
to search the extended search space, then the P1 relaxation clearly does not
pay off. Depending on the answer to open problem 3.12 on page 39 we might
be able to gain some performance by reintroducing P1.

As noticed in section 3.2.2 the framework based on recursive dissolvement
might introduce so much redundancy that the time saved on finding maximal
infeasible cliques is surpassed by the extra time needed to search the larger
search space. Depending on the answer to open problem 3.11 on page 38
it might pay off to reintroduce the original MC measuring and just do the
dissolvement as a feasibility check for guillotine packings. Reintroducing the
original measuring model, of course requires P1 to be satisfied.

Using bounds

Currently both algorithms traverse huge parts of the search space. Using
bounds to deduce if a node will ever become feasible and drop the node if
not, is a way to improve performance. As described in section 4.2.1 on page 56
a simple volume estimation can be done for sticky cuttings: A bounding box
smaller than the container is found for each clique and the box volume of
the clique was used to deduce if the clique could ever be made feasible. This
was possible due to the nice behavior of sticky cutting augmentations. It was
attempted to find a similar estimation for guillotine packings but that never
succeeded.

Another way of improving the bounding is to scale all boxes with con-
servative scales before the algorithm starts. This scaling technique will be

76 Computational results

described in section 6.2. By performing such a scaling, cliques might render
infeasible earlier in the augmentation process and hereby we might be able
to drop search nodes earlier.

Changing search strategy

Currently a depth-first search strategy is used. Changing this to a best-first
would require some classification method of the quality of each search node.
Such classification is not trivial.

5.4.2 Implementational considerations

In order to give a more complete picture of the performance the very imple-
mentation was analyzed to uncover if this could have any significant influence
on efficiency of the solvers. Both the GP- and SC solver was therefore ana-
lyzed with the profiling tool gprof. The tool gprof can be used to create a call
graph of the running code with information on execution time and number
of calls for each function.

Consider the call graph for the guillotine solver shown in figure 5.11. As

index % time self children called name

[1] 99.7 0.00 756.50 main

[2] 99.7 0.00 756.32 1 Solver::solve(int)

[3] 99.7 0.12 756.19 1 Solver::_solve(int)

[4] 52.3 0.18 396.29 2178285 __gnu_cxx::hash_set<...>::~hash_set()

[5] 52.2 0.64 395.66 2178285 __gnu_cxx::hashtable<...>::~hashtable()

[6] 51.5 0.34 390.69 687392 __gnu_cxx::hash_map<...>::operator[]

[7] 50.6 46.74 337.51 2190069 __gnu_cxx::hashtable<...>::clear()

[8] 34.8 0.13 264.27 11757 Searchnode::update_searchinfo()

...

[14] 28.3 0.18 214.67 11498 Searchnode::packingclass_test()

...

[15] 27.2 64.32 142.42 847243415 std::vector<...>::operator[]

...

Figure 5.11: A table showing the gprof output for the guillotine
solver. The original gprof output shows also both callers and callees
for each function but these informations have been removed for sim-
plicity. The index column holds the number n for the n’th most time
consuming function. % time holds the ratio between the execution
time for the current function and the total execution time. This col-
umn clearly does not summarize to 100% as the functions may call
each other. self and children shows the cumulative number of seconds
spend in the current function body and in its children. called is the
number of times the current function is called and name identifies the
function.

5.4 Investigating the performance 77

seen, the total execution time is 756.50 seconds. Out of these, 52.3% of
the time was inside the stl::hash_set destructor and 51.5% inside the
stl::hash_map index operator (clearly, these two calls must share some
sub routines as the sum is greater than 100%). The index operator for
stl::hash_map is costing 0.5683 milliseconds per call in contrast to the
0.0002 milliseconds per call for the std::vector. Even though the stl::-

hash map is known to be more complex than the std::vector, this is sur-
prisingly expensive as the index operator for the hash has constant time
complexity. As seen, 27.2% of the time is used inside the index operator for
std::vector. Even though this is a relatively heavy post, the large number
of calls makes each fetch relatively cheap.

Profiling data for the sticky cutting solver can be seen in figure 5.12.
The structure of the call graph is slightly different from the call graph for

index % time self children called name

[1] 99.7 0.00 186.90 main

[2] 99.7 0.00 186.86 1 Stickysolver::solve(int)

[3] 99.6 0.01 186.83 1 Stickysolver::_solve(int)

[4] 50.5 0.05 94.66 521092 __gnu_cxx::hash_set<>::~hash_set()

[5] 50.5 0.10 94.55 521092 __gnu_cxx::hashtable<>::~hashtable()

[6] 48.8 11.61 79.97 521106 __gnu_cxx::hashtable<>::clear()

[7] 40.7 0.06 76.30 133199 __gnu_cxx::hash_map<...>::operator[]

[8] 31.7 0.04 59.34 369876 __gnu_cxx::hash_set<>::hash_set()

.. .

[11] 31.2 0.07 58.35 3966 Stickynode::packingclass_test()

...

[16] 19.8 0.01 37.20 3966 Stickynode::update_searchinfo()

...

Figure 5.12: gprof output for the sticky cutting solver

the guillotine solve but the same symptoms appear. Much time is spend
on the stl::hash_set destructor and on the indexing operator for the
stl::hash_map.

Both implementations rely heavily on mappings from a simple integer
identifier to a more complex data type. Disregarding the bad performance
of the hashing based data structures, these were ideal to the job. It would
require a total reimplementation (and thus be a relatively time consuming
task) to totally drop the currently used data structure paradigm, so instead
only a subset of the data types was replaced for testing purposes. The goal
was to verify that some performance could be gained by moving away from
the hashing based STL structures. The replacement was a statically sized
container using a set of std::vectors internally in order to provide constant
time lookup, insertion and deletion at random positions and fast traversal
of all identifiers contained. The constant size (|V |) is of course a drawback
when used in subproblems for a small subset of V .

78 Computational results

In the previous section we have already seen that the static data types
performed better for our usage than the hashing based. That is, an increase
in performance by a constant size, O(1). Figure 5.13 shows some of the
gprof analysis for the guillotine solver using these new static data structures
(simply named Set and Map). It appears that the load has moved from

index % time self children called name

[1] 99.8 0.00 148.95 main

[2] 99.8 0.00 148.84 1 Solver::solve(int)

[3] 99.8 0.06 148.77 1 Solver::_solve(int)

[4] 48.0 0.53 71.06 4621478 std::_Bit_iterator std::copy<...>(...)

...

[8] 43.2 0.79 63.59 2762067 Set::Set(Set const&)

...

[10] 34.7 0.00 51.83 16728 Searchnode::Searchnode()

...

[25] 24.3 0.10 36.10 11498 Searchnode::packingclass_test()

...

[27] 21.4 0.01 31.86 11757 Searchnode::update_searchinfo()

...

Figure 5.13: A table showing the gprof output for the guillotine
solver using static data structures.

destructors and index operators to copying of the new data structures. The
same tendency is seen in the gprof output for the optimized sticky cutting
solver (figure 5.14). Most of the time is now used by creating and copying
search nodes.

index % time self children called name

[1] 99.9 0.00 30.46 main

[2] 99.8 0.00 30.44 1 Stickysolver::solve(int)

[3] 99.8 0.01 30.43 1 Stickysolver::_solve(int)

[4] 27.7 0.00 8.45 6616 Stickynode::Stickynode(Stickynode const&)

[5] 23.8 0.05 7.21 312756 Set::Set(Set const&)

[6] 22.7 0.02 6.90 3302 Stickynode::operator=(Stickynode const&)

...

[8] 21.0 0.06 6.33 409154 std::_Bit_iterator std::copy<...>()

...

[13] 19.7 0.06 5.95 3966 Stickynode::packingclass_test()

...

[46] 10.5 0.00 3.20 3966 Stickynode::update_searchinfo()

...

Figure 5.14: A table showing the gprof output for the sticky cutting
solver using static data structures.

5.4.3 Remarks

As discussed, both algorithms could benefit from a bit refinement. We proved
that a change of data structures had a positive influence on the performance.

5.4 Investigating the performance 79

A more drastic reimplementation with a complete rethinking of the use of
data structures would probably speed up the solvers even more. One option
to consider would be to use some existing libraries for representing graphs.
Both LEDA and BOOST are examples of such libraries and the large amount
of effort put into their optimization might come in handy when used in the
solvers.

But the biggest performance gain would probably come from purely al-
gorithmic optimizations. As discussed in section 5.4.1 there are still several
untried experiments to be done:

• Using bounds and scaling boxes by conservative scales.

• Using a best-first traversal for search nodes.

• For the guillotine solver: Reintroducing P1 and

• Reverting to the original MC measuring framework and only use the
dissolvement technique when checking for and ensuring the guillotine
property.

80 Computational results

6 Chapter 6

Lower bounds

Several papers have been published about lower bounds for the unrestricted
two- and three-dimensional bin packing problem. In contrast only a very
limited amount of work has been published for lower bounds satisfying vari-
ous restrictions, e.g. for packings satisfying the guillotine cuttable property.
Clearly, a lower bound for the unrestricted case is also a feasible lower bound
for the restricted one – however, it is likely not as tight. The simplest non-
trivial lower bound for OBPP is probably the continuous lower bound:

Definition 6.1 (Continuous lower bound L0) Let Vv denote the volume
of a box v ∈ V and let Vc denote the container volume. Then

L0 =

⌈
∑

v∈V Vv

Vc

⌉

is a valid lower bound. L0 is also referred to as the continuous lower bound.

This bound can be thought of as the number of containers needed to contain
all boxes if they were melted into some liquid substance. Now let L be a
lower bound and let

ρ(L) = inf
I instance

(

L (I)

OPT(I)

)

denote the worst case performance of L (I) for all instances I.

It is known that ρ(L0) = 1
2

for OBPP-1 [MT90]. For OBPP-2 we have
ρ(L0) = 1

4
[MV98] and for OBPP-3 we have ρ(L0) = 1

8
[MPV97]. The general

result ρ(L0) = 1
2d has been proved (asymptotically) by Mauro Dell’Amico in

[Del98].

In this chapter we give a short survey of various more tight lower bounds
for the unrestricted OBPP. Three types of bounds will be described. Section

81

82 Lower bounds

6.1 gives some examples of bounds specifically constructed for a specific d by
assembling volume considerations of different box groupings. In section 6.2
a more general method for creating bounds for higher-dimensional problems
by scaling the boxes with conservative scales is described. Section 6.3 covers
a more detailed description of an algorithm by Pisinger and Sigurd which
can be used to calculate a lower bound for restricted bin packing problems.

6.1 Assembled bounds for d ∈ {1, 2, 3}

A typical way of constructing lower bounds is to divide the boxes in classes
depending on their size and make various estimations on the volume con-
sumption of each class. The lower bounds obtained hereby may then be
assembled into new lower bounds. This section shows some examples of this
technique for d ∈ {1, 2, 3}.

Example for d = 1

Consider the one-dimensional problem with n boxes of size ci, i ∈ B =
{1, . . . , n} and containers of capacity C. Figure 6.1 depicts the sets Ss, Sm, Sl

defined by Ss = {i ∈ B | p < ci ≤
1
2
C}, Sm = {i ∈ B | 1

2
C < ci ≤ C−p} and

Sl = {i ∈ B | ci > C − p} where 1 ≤ p ≤ 1
2
C. No two items from Sm ∪ Sl

0 p

Ss

1
2
C

Sm

C − p

Sl

C

Figure 6.1: Intervals used in Lα and Lβ

can be placed in the same container and these items will therefore generally
be referred to as large items.

Lα defined below is a lower bound for the OBPP-1. It was originally
presented in [MT90].

Lα = max
1≤p≤

1
2
C

|Sm ∪ Sl|+ max

0,

∑

i∈Ss∪Sm

ci

C
− |Sm|

Lα can be thought of as “the number of large items” plus eventually “a vol-
ume estimate” where the latter is “the number of containers used to contain
the volume of all medium sized items for which there might be two or more

6.1 Assembled bounds for d ∈ {1, 2, 3} 83

per container” minus “the number of items from Sm already included” – cal-
culated for various definitions of large. A similar lower bound by [DM95] is
Lβ defined as

Lβ = max
1≤p≤

1
2

C

|Sm ∪ Sl|+ max

0,

|Ss| −
∑

i∈Sm

⌊

C−ci

p

⌋

⌊

C
p

⌋

In 1998 Martello and Vigo [MV98] propose a, somewhat obvious, lower bound
L1 that combines Lα and Lβ:

L1 = max(Lα, Lβ)

L1 can be computed in O(|B|2) time if the boxes are sorted according to
decreasing size.

Example for d = 2

In [BM03] the method of combining existing bounds is used in order to create
a bound for d = 2. Let the size of each two-dimensional box be (wi, hi), i ∈ B
and let the container size be (W, H). Similar to before we define two sets
K1, K2 by grouping boxes of certain size:

K1 = {i ∈ B | p ≤ wi ≤ W − p}
K1 = {i ∈ B | wi > W − p}

where 1 ≤ p ≤ 1
2
W . The intervals are illustrated in figure 6.2. No box

0 p
1
2
W

K1

W − p

K2

W

Figure 6.2: Intervals used in L2

from K2 can be packed side by side with a box from K1 ∪K2. Therefore the
occupied area of the boxes in K2 are at least Whi. Now, construct a OBPP-1
instance with container capacity WH and n items of size

ci =

{

wihi i ∈ K1

Whi i ∈ K2

Let zw(p) denote the solution for this OBPP-1 instance for some p and let
LW

2 = max{zw(p) | 1 ≤ p ≤ 1
2
W}. Then LW

2 is a valid lower bound for

84 Lower bounds

OBPP-2. Similarly, by exchanging widths with heights in the definition of
LW

2 we can obtain the bound LH
2 . A feasible lower bound dominating Lα and

Lβ is L2 = max(LW
2 , LH

2).

Example for d = 3

Analogous constructions have been made for d = 3. Let the container size for
the three-dimensional case be (W, H, D) and let the n box sizes be (wi, hi, di)
for i ∈ B. Define by

JWH = {i ∈ B | wi > 1
2
W and hi > 1

2
H}

the set of all boxes having large width and height and by

Jl(p) = {i ∈ JWH | 1
2
D < di ≤ D − p}

Js(p) = {i ∈ JWH | p ≤ di ≤
1
2
D}

the sets of all boxes in JWH having large and small depth respectively for
1 ≤ p ≤ 1

2
D. Very similar to the idea of Lα and Lβ we can now define

LWH
3 = |{i ∈ B | di > 1

2
D}|

+ max
1≤p≤

1
2

D

∑

i∈Js(p) di −
(

|Jl(p)|D −
∑

i∈Jl(p) di

)

D

,

|Js(p)| −
∑

i∈Jl(p)

⌊

D−di

p

⌋

⌊

D
p

⌋

In [MPV97] it is shown that LWH
3 is a valid lower bound for OBPP-3. By

interchanging the depth, width and height variables the lower bounds LWD
3

and LHD
3 can be obtained. A lower bound dominating all three can be con-

structed as L3 = max(LWH
3 , LWD

3 , LHD
3).

Notice that although L3 > L0 for some instances it is not dominating
L0: Consider the instance of n ∈ 8N boxes of size (1

2
W, 1

2
H, 1

2
D) where

W, H, D ∈ 2N. As LWH
3 = LWD

3 = LHD
3 = ∅ we have L3 = 0 while L0 = 1

8
n.

That is, the worst case performance of L3 is arbitrarily bad.

6.2 Scaling based bounds

The bounds presented in section 6.1 were all constructed to a specific value
of d. Consider the d-dimensional bin packing problem and reintroduce the

6.2 Scaling based bounds 85

notation from the earlier chapters with a size function wi, i ∈ {1, . . . , d} for
each box v ∈ V and a container of size (W1, . . . , Wd). Also let (V, w) be
a shorthand notation for the instance (V, w, W) and ⊗w(v) =

∏

1≤i≤d wi(v)
denote the volume of box v ∈ V given the size function w. A trivial necessary
condition required in order for a packing to exist for an OPP-d instance is
that the total box volume does not exceed the container volume:

Definition 6.2 (Volume criterion) For an OPP-d instance (V, w) with
container size W the volume criterion is satisfied if

∑

v∈V

⊗w(v) ≤
∏

1≤i≤d

Wi

By scaling box sizes appropriately the volume criterion may become an effi-
cient tool to declare an instance infeasible. In the following we will explore
the idea of such a scaling.

Lueker [LUE83] introduces the term dual feasible function.

Definition 6.3 (Dual feasible function) A map u : [0, 1] → [0, 1] is a
dual feasible function if for all finite non-negative sets S we have

∑

v∈S

v ≤ 1⇒
∑

v∈S

u(v) ≤ 1

[FS01] describes how to obtain lower bounds directly from dual feasible func-
tions.

The functions have a practical property: Lower bounds for a transformed
instance u(I) is valid for the non-transformed I too:

Theorem 6.4 Let Lu(I) be a lower bound for the transformed instance u(I)
where u is a dual feasible function. Then Lu(I) is also a lower bound for I.

Proof Assume the opposite, that Lu(I) is not a valid lower bound for I.
That is, OPT(I) ≤ Lu(I) − 1 or equivalent: There exist some set S that is
contained in a single bin in the optimal solution OPT(I) but will use more
than one bin in the transformed solution OPT(u(I)) as Lu(I) ≤ OPT(u(I)).
This implies the existence of a set, S, for which

∑

v∈S v ≤ 1 ;
∑

v∈S u(v) ≤ 1
which contradicts that u is a dual feasible function. 2

Areas of a dual feasible function that increase (decrease) the argument value
is denoted win zones (loose zones). For a given instance I the goal is to

86 Lower bounds

construct a dual feasible function having as many boxes in the win zones as
possible.

Example 6.5 The function

u(k) :[0, 1]→ [0, 1]

x 7→

{

x x(k + 1) ∈ Z
1
k
bx(k + 1)c otherwise

is a dual feasible function (proof is omitted here). Figure 6.3 illustrates u(k).
3

0 1

2
1

0

1

(a) k = 1

0 1

3

2

3
1

0

1

2

1

(b) k = 2

0 1

4

2

4

3

4
1

0

1

3

2

3

1

(c) k = 3

Figure 6.3: Example of u(k) for k ∈ {1, 2, 3}. The win zones are seen
above the y = x line (the light grey areas).

Recall the packing class properties for a set of graphs G1, . . . , Gd. As
required by P2 all stable sets in Gi must be i-feasible. We aim to establish a
necessary condition, based on box scalings, for P2 to be satisfied. For wi let
F(V, wi) denote all subsets of S ⊆ V being i-feasible.

F(V, wi) = {S ⊆ V | wi(S) ≤ Wi}

where wi(S) =
∑

v∈S wi(v). Notice that S might not be stable. This require-
ment will be added later.

The following definition is essential throughout this section:

Definition 6.6 (Conservative scale) Let (V, w) be an OPP-d instance. A
function w′ satisfying

F(V, wi) ⊆ F(V, w′
i) , ∀i ∈ {1, . . . , d} (6.1)

is called a conservative scale for (V, w).

6.2 Scaling based bounds 87

A conservative scale can always be constructed by using dual feasible func-
tions:

Lemma 6.7 Let u1, . . . , ud be dual feasible functions and (V, w) an OPP-d
instance. Then w′ = (u1 ◦ w1, . . . , ud ◦ wd) is a conservative scale for (V, w).

With the definition of conservative scales in hand a formal criteria for a
transformed instance (V, w′) to contain a packing class can be given:

Lemma 6.8 Let (V, w) be an OPP-d instance and w′ a conservative scale.
Any packing class for (V, w) is also a packing class for (V, w ′).

The lemma is almost trivially true since every stable set in the left hand side
of (6.1) is also contained in the right hand side. Lemma 6.8 implies that
conservative scales can be used to determine existence of a packing class for
a non-transformed instance I:

Theorem 6.9 Let (V, w) be an OPP-d instance and w′ a conservative scale.
Then

∑

v∈V

⊗w′(v) ≤
∏

1≤i≤d

Wi

is a necessary condition for the existence of a packing class for (V, w).

The following example brings it all together.

Example 6.10 Let I be an OPP-3 instance with a unit cube container and
9 boxes of size (3

7
, 3

7
, 3

7
). Each box has a volume of (3

7
)3 = 27

343
and since

9 · 27
343

= 243
343

< 1 the volume criterion cannot be used to declare the instance
infeasible.

Instead use the dual feasible function u(2) defined in example 6.5 on the
facing page and apply lemma 6.7 to obtain a conservative scale w′ for the
instance. With w′ the box sizes are (1

2
, 1

2
, 1

2
) which gives each box a volume

of 1
8
. Since 9 · 1

8
= 9

8
> 1 theorem 6.9 tells that no packing class exist for I.

3

If an augmentation based algorithm like the one described in chapter
2 is used to find a packing class each step provides a tuple of d edge sets
E+,1, . . . , E+,d that can be thought of as a partially build packing class. For
each packing class E = (E1, . . . , Ed) found in a successor search node we
have

E+,i ⊆ Ei , ∀i ∈ {1, . . . , d} (6.2)

88 Lower bounds

The P2 condition concerns only stable sets so it is sufficient to consider those
S ∈ F(V, wi) for which S is a stable set in E+,i, i.e. the sets S ∈ F(V, wi) for
which E+,i[S] = ∅. Let

F(V, w, E+,i) = {S ∈ F(V, w) | S is stable in E+,i}

A conservative scale for F(V, w, E+,i) can then be defined similar to definition
6.6:

Definition 6.11 (Conservative scale for (V, w, E+,i))
Let (V, w) and (V, w′) be OPP-d instances and E+ = (E+,1, . . . , E+,d) a tuple
of edge sets for which (6.2) is satisfied for a packing class E for (V, w). Then
w′ is a conservative scale for (V, wi, E+) if

F(V, w, E+,i) ⊆ F(V, w′) , ∀i ∈ {1, . . . , d}

A stable-set-version of lemma 6.8 can now be formulated:

Lemma 6.12 Let (V, w) be an OPP-d instance, E+ a tuple of edge sets sat-
isfying (6.2) and for a packing class E for (V, w). If w′ is a conservative
scale for (V, w, E+) then E is also a packing class for (V, w′).

Also a stable-set-version of theorem 6.9 is valid:

Theorem 6.13 Let w′ be a conservative scale for (V, w, E+). Then
∑

v∈V

⊗w′(v) ≤
∏

1≤i≤d

Wi (6.3)

is a necessary condition for the existence of a packing class for (V, w).

Theorem 6.13 is exactly what we searched for. By using conservative scales
to enlarge the boxes we can perform a cheap check of (6.3) in order to discard
a search node earlier.

A lower bound for an OBPP-d instance (V, w) can be achieved by using
L0 on various transformations (V, w). We define L4 as the maximum of all
L0 bounds for a set of transformations W.

Theorem 6.14 Let (V, w) be an OBPP-d instance and W a set of conser-
vative scale for (V, w). Then

L4(V, w) = max
w′∈W

⌈

⊗w′(V)
∏

1≤i≤d Wi

⌉

(6.4)

is a valid lower bound for (V, w).

6.3 A bound for guillotine packings 89

If the conservative scales w′ are constructed using dual feasible functions
the bound in (6.4) can be calculated in O(|V |d) time. Fekete and Schepers
[FS97b] show that this method of constructing lower bounds is a generaliza-
tion of the bounds in [MPV97] and [MV98].

6.3 A bound for guillotine packings

In this section we describe an algorithm presented in [PS02] which is capable
to compute a lower bound for the guillotine cuttable OBPP-2. With a slight
modification the algorithm can be extended to handle arbitrary d. The main
strategy for the algorithm is as follows:

1. The LP-relaxation of a conventional formulation of OBPP-2 as a mixed
integer program (MIP) leads to a quite weak lower bound and is there-
fore hard to solve for ordinary MIP solvers. Instead Dantzig-Wolfe
decomposition [DW60, Wol98] is used to give a more tight formulation.

2. In the decomposition the restricted master problem (RMP) becomes
a setcover problem in which each set represents a packing of a single
container. This problem is solved through delayed column generation in
order to find a bound for the LP-relaxation faster. The pricing problem
becomes a two-dimensional knapsack problem in which the task is to
select a subset of boxes that fits in a knapsack of container size and
results in a packing with maximum absolute reduced cost.

This two-dimensional knapsack problem is then split into a one-dimen-
sional multi-constrained knapsack problem in which a subset of boxes
is chosen and a two-dimensional packing decision problem in which it
is determined if the chosen subset can be packed in a single container.
Additional constraints on the packings, e.g. the guillotine property are
handled in the solver for the latter problem.

The RMP is taking care of distributing boxes among the containers so that all
boxes are used and it is initially fed with a single feasible packing obtained by
a heuristic. Other packings are added through the subproblems (the pricing
problems): In each subproblem the task is to find a feasible packing with
smallest reduced cost and add it to the RMP. The process stops when all
subproblems provides packings that are already in RMP.

The lower bound is a side effect of the LP-relaxation of the master prob-
lem.

Below we describe each step in further details.

90 Lower bounds

6.3.1 The master problem

As mentioned above, the algorithm uses a set cover formulation of the bin
packing problem as RMP. Applying Dantzig-Wolfe decomposition alleviates
an inherent problem with the OBPP-2 MIP formulation. As we shall see
below, the number of constraints in such a model is very large and the model
thus immensely difficult to solve.

Let B = {1, . . . , n} be the set of boxes and let (W, H) denote the container
dimensions. Also let the binary variable lij = 1 if and only if box i is located
to the left of j. Similarly let bij = 1 if and only if i is below j. Box i is placed
at bin mi ∈ N and for pij ∈ {0, 1} we set pij = 1 if and only if mi < mj.
First of all we must make sure that for every two boxes i and j, either these
are beside or above each other or in two different containers. That is,

lij + lji + bij + bji + pij + pji ≥ 1, i, j ∈ B, i < j

Let (xi, yi) denote the coordinate of the lower left corner of box i with
size (wi, hi). If two boxes i and j are in the same container, then in order to
ensure that they are not overlapping we must have

lij = 1⇒ xi + wi ≤ xj

bij = 1⇒ yi + hi ≤ yj

(6.5)

By reformulating these equations to

xi − xj + Wlij ≤ W − wi

yi − yj + Hbij ≤ H − hi

we obtain two statements that are trivially true for lij = 0 or bij = 0 but are
equivalent to the inequalities in (6.5) when lij = 1 or bij = 1.

Also we must ensure that 0 ≤ xi ≤ W − wi and 0 ≤ yi ≤ H − hi.

The requirement pij = 1⇒ mi < mj is equivalent to

pij = 1⇒ mi + 1 ≤ mj

which can be reformulated to

mi −mj + npij ≤ n− 1

in order to obtain a statement that are trivially true for pij = 0 but are
equivalent to the above inequality for pij = 1.

6.3 A bound for guillotine packings 91

If c is the number of containers used the above constraints can be assem-
bled to the following model:

min c
s.t. lij + lji + bij + bji + pij + pji ≥ 1 i, j ∈ B, i < j

xi − xj + Wlij ≤ W − wi i, j ∈ B
yi − yj + Hbij ≤ H − bi i, j ∈ B
mi −mj + npij ≤ n− 1 i, j ∈ B
0 ≤ xi ≤ W − wi i ∈ B
0 ≤ yi ≤ H − hi i ∈ B
1 ≤ mi ≤ c i ∈ B
lij, bij, pij ∈ {0, 1} i, j ∈ B
xi, yi ∈ R+

0 i ∈ B
mi, c ∈ N0 i ∈ B

(6.6)

The model has 3n2 binary variables, 2n continuous variables and 1
2
n2 +3n2 +

6n = 7
2
n2 + 6n constraints.

Because of the large number of constraints in (6.6) and because of the
large amount of symmetric solutions the model is difficult to solve for MIP
solvers:

Figure 6.4 shows a typical structure of an LP-model in which there are a
few rows of coupling constraints and (larger) number of independant subprob-
lems. This applies to (6.6) too: The independent subproblems is ensuring

Coupling constraints

Sub.

Sub.

Sub.

Figure 6.4: A typical structure of a linear program consisting of a
lot of zeros (the white area), a number of independent subproblems
(marked Sub. above) and eventually a set of rows that serves as cou-

pling constraints. In Dantzig-Wolfe decomposition a restricted master

problem (RMP) containing only the coupling constraints is created.
The RMP is then gradually extended by solving the subproblems in-
dividually.

that a packing of a single container is feasible.

With use of Dantzig-Wolfe decomposition (6.6) is decomposed into a set
cover problem as RMP and a number of subproblems as mentioned earlier.

92 Lower bounds

So let P denote the set of all possible feasible packings of a single bin and
let the binary constant δp

i = 1 if and only if the packing p ∈ P contains
the box i. Also let the binary variable xp = 1 if and only if the packing p is
used in the solution. In order to ensure that every rectangle in B is packed
in at least one bin we must have

∑

p∈P
xpδ

p
i ≥ 1 for all i ∈ B. The set cover

formulation then looks as follows:

min
∑

p∈P

xp

s.t.
∑

p∈P

xpδ
p
i ≥ 1 i ∈ B

xp ∈ {0, 1} p ∈P

(6.7)

A solution for the relaxed (6.7) is also a solution in the relaxed (6.6) since
it corresponds to some configuration of variables where lij, bij, pij ∈ {0, 1},
mi ∈ N0 but c ∈ R+

0 . On the other hand, a solution for the relaxed (6.6)
is not a solution for the relaxed (6.7) since a solution in which lij, bij, pij /∈
{0, 1} cannot be represented in the latter. Hence the bound obtained by the
relaxation of (6.7) dominates the bound obtained by the relaxation of (6.6).

In the initial RMP we only consider a small subset P ′ ⊂P of packings
obtained from a heuristic solution. In subsequent iterations more packings
are added. This technique is also known as delayed column generation. The
RMP then looks as follows:

min
∑

p∈P′

xp

s.t.
∑

p∈P′

xpδ
p
i ≥ 1 i ∈ B

xp ∈ R+
0 p ∈P ′

(6.8)

The essential next step is the selection of packings to include into the
RMP. Consider the LP-relaxed dual to the original set cover model (6.7):

max
∑

j∈B

yj

s.t.
∑

j∈B

yjδ
p
j ≥ 1 p ∈P

yj ∈ R+
0 j ∈ B

(6.9)

The week duality theorem tells that if a set of dual variables yj render the
dual set cover (6.9) feasible and also the corresponding primal variables xi

render the relaxation of (6.7) feasible then xi and yj are optimal solutions to

6.3 A bound for guillotine packings 93

the primary and dual program respectively. Otherwise, if the xi are feasible
in (6.7) but yj render (6.9) infeasible then some set of constraints of the
form

∑

j∈B yjδ
p
j ≥ 1 must be violated in the latter for a subset of Q ⊆ P.

In the initial iterations of the algorithm where the cardinality of P ′ is still
small each solution to RMP may result in a large number of violations in
the corresponding dual (6.9). By adding the packings in Q to RMP (6.8)
the solution to RMP in subsequent iterations will correspond to a feasible
solution in the dual and hereby the process will terminate in an optimum as
P is finite.

The drawback of adding all packings in Q to RMP is the resulting in-
creased complexity of RMP. Therefore only the single packing inducing the
most violating constraint in the dual is added in each iteration. Let

γy
p = 1−

∑

j∈B

yjδ
p
j

denote the amount of violation resulting from packing p and the dual vari-
ables yj. γy

p is also referred to as the reduced cost of p. If γy
p < 0 the constraint

has been violated so the most significant reduced cost is

min
p∈P\Q

γy
p .

Clearly, if γy
p ≥ 0 for all p then no constraints are violated and xi is thus an

optimal solution.

The task of selecting a packing p with smallest reduced cost is referred to
as the pricing problem which is roughly described in the following section.

6.3.2 The pricing problem

Finding the smallest reduced cost is equivalent to finding the packing with
greatest corresponding yj-sum, which is exactly the formulation of a two-
dimensional knapsack problem in which the profit for each box is yj.

The knapsack problem is NP-hard so a polynomial greedy heuristic is
used in every iteration to find a feasible packing with low (not necessarily
lowest) reduced cost and only if the heuristic fails the problem is solved with
an exact algorithm. The exact algorithm is sketched below:

The MIP model of the knapsack problem has the same drawbacks as
the MIP formulation of the original bin packing problem: A large number
of variables and a generally bad formulation with a lot of symmetry. Thus
the two-dimensional knapsack problem is again split into a one-dimensional

94 Lower bounds

optimization problem selecting a subset of boxes with smallest reduced cost,
and a two-dimensional packing decision problem that decides whether the
chosen boxes fit into a container or not. Such decision algorithms based
on Fekete and Schepers work have already been described in chapter 2, 3
and 4 for arbitrary d. In 6.3.3 yet another approach relying on constraint
programming is described.

We will not cover the algorithm for solving the one-dimensional optimiza-
tion problem in details, but will give a short outline below. Given the profits
λj = yj the problem is to find a subset of boxes with highest profit so that
the area of the chosen boxes does not exceed the container area. In other
words, this is a 0-1 knapsack problem:

max
∑

i∈B

xiλi

s.t.
∑

i∈B

xiwihi ≤ WH

xi ∈ {0, 1} i ∈ B

(6.10)

Let B′ ⊆ B denote the set of boxes chosen by (6.10). If an exact solver
for the packing decision problem can fit the boxes in B ′ into a container
then the corresponding packing is added to RMP (6.8). Otherwise the cut
∑

i∈B′ xi < |B′| is added to (6.10) in order to prevent this subset from being
chosen in a subsequent iteration.

[PS02] describes a number of optimizations to the 0-1 knapsack problem,
e.g. a branch-and-bound approach that sorts the boxes according to increased
profit efficiency and branches on the most efficient. It also makes use of a
modified version of the CSP algorithm described in section 6.3.3 but this will
not be covered here.

6.3.3 A CSP algorithm for OPP-2

The CSP approach for the OPP problem used in [PS02] is interesting for
several reasons: It is a fairly different approach to OPP than the algorithms
described earlier in this text and an implementation of it has been used as
basis for comparison in chapter 5.

Let B′ denote the set of boxes chosen in the one-dimensional optimization
problem. The algorithm recursively assigns one of the values from M =
{above, below, left, right} to each pair i, j ∈ B ′. So let rij ∈ M ∪ {NULL}
denote the relation between each i, j pair and set initially rij = NULL for
all i, j. Furthermore, in order to avoid mirror symmetric solutions, r12 ∈
{left, below}. In each node in the search tree one rij is assigned a value from

6.3 A bound for guillotine packings 95

M and it is checked if the boxes are placed in a gap less packing so that
no boxes overlap and no box exceed the container boundaries. This is done
by assigning coordinates starting from the bottom left most box towards the
top right box similar to the construction of the packing pF defined on page
11. The coordinate assignment can be done in O(|B ′|2) time. If the check
fails the branch is dropped, otherwise the search progresses until all relations
have been assigned a value in which case a feasible packing has been found.

As the values left/right and above/below are inverse the assignment rij =
m for m ∈M implies that rji = ¬m where ¬m is the inverse value of m. E.g.
rij = left ⇒ rji = right. Also the relation assignments should be transitive
and thus the following implications holds:

rij = m ∧ rjk = m ⇒ rik = m i, j, k ∈ B′

The guillotine property and other requirements to the packing is also
handled in the CSP decision solver. To ensure the guillotine property the
following check is made after a successful coordinate assignment: A scan for
a vertical cut is done by ordering the boxes after increasing x-coordinate and
for each distinct x-coordinate separating B ′ in two subsets S1 and S2 so that
rij = m ∈M for all i ∈ S1 and j ∈ S2. A similar split is made for horizontal
cuts. Such a scan can be done in O(|B ′|2) time. The test is afterwards
performed recursively on both S1 and S2 until all splits are singleton sets or
until no further split can be made. At most O(|B ′|) such splits can be made
and thus the total check is done in O(|B ′|3) time.

6.3.4 Remarks on the bounds

When the iterations progress the partial LP-solutions to (6.8) will decrease
and only when the volumn generation process terminates it is certain that
the LP-solution is smaller than OPT (and thereby feasible). This final LP-
solution is a lower bound for (6.6). Generalizing the algorithm for the decision
subproblem or exchanging it with another appropriate algorithm would make
the bound apply to OBPP for arbitrarily large d.

Solving the problem using Lagrange relaxation would not have the draw-
back with slow convergence. However, this relaxation suffers from the need
of finding appropriate Lagrange multipliers.

96 Lower bounds

7 Chapter 7

Solving OBPP-d

Section 6.3 described an algorithm for OBPP-d based on column generation.
With a slight modification the algorithm could be generalized to arbitrary
values of d. The described algorithm is one approach to OBPP-d and in this
chapter we describe another approach: A branch-and-bound algorithm for
OBPP-d that brings all the past chapters together by combining the use of
OPP-d solvers and lower bounds for OBPP-d. The algorithm is based on the
exact branch-and-bound algorithm presented in [MPV97] but is generalized
to utilize arbitrary lower bounds and arbitrary OPP-d solvers. By using
appropriate bounds and OPP-d solvers the algorithm is no longer restricted
to the three-dimensional case.

The overall concept is an outer branch-and-bound algorithm that assigns
boxes to containers without taking their position inside the container into
account. Throughout the algorithm execution a global variable z holds the
currently best found solution value and z can thus always be considered
as an upper bound for the further search. Each node contains a set M =
{C1, C2, . . . , Cn} of containers where each container Ci is associated with a
subset Vi ⊆ V of all boxes V .

A container is called closed if it can be proved that no more boxes can
be packed into it and open otherwise. Also an assignment of a box v to a
container Ci is referred to as fixed if v is assigned Ci for all successor nodes
of a subtree.

The search is initialized by sorting all boxes by non-increasing volume and
constructing a heuristic root solution M0 with some assignment of all boxes
into a number of containers. In each search node the (by volume) largest
unfixed box v is selected and for each open container Ci a branch node is
created in which v is fixed to Ci. If a search node N has |MN | < z − 1
then v is also assigned to a new container (which state is therefore initially

97

98 Solving OBPP-d

open). This can be done because the extra container will still leave |MN | < z.
By this branching strategy each search node will represent a box/container
fix. Denote by the current container the container involved in the fix at the
current search node N . Empty containers can be removed from MN .

At each search node it is determined if a single-container packing exists
for the box set assigned to the current container or if the subtree can be
skipped. Let Ci denote the current container and let Vi ⊆ V be the subset of
boxes currently assigned to Ci. To check feasibility some lower bound L (Vi)
is computed for Vi. If L (Vi) ≥ 2 no feasible packing exists and the subtree
can be skipped. Otherwise, a heuristic is computed for Vi. Examples of such
heuristics are described for d = 2 in [MV98] and for d = 3 in [MPV97]. The
latter can relatively easily be extended to arbitrary values of d. If a heuristic
single-container packing is found the search may continue. Otherwise, the
last and most cumbersome test is made: OPP-d for Vi is solved with an exact
solver. If no packing can be found, the search node is dropped.

When a node N is accepted in the above step, an attempt to close the
current container Vi is made. For each yet unfixed v ∈ V \Vi, let V v

i = Vi∪{v}
and calculate L (V v

i). If L (V v
i) > 1 for all v the current container cannot

be extend with any available box and it can therefore be closed. Else, let
V ′ ⊂ V \Vi denote the set of all v for which L (V v

i) = 1 and try to construct
a heuristic packing of Vi ∪ V ′. The container is closed if such a packing is
found.

As a last step, the following test is made in order to minimize the search
space: Let c denote the number of closed bins in the current search node and
Vf denote the set of “free” boxes not yet assigned to a closed container. If
L (Vf) + c ≥ z the search node can be dropped. In that case, the subtree
will not contain a better solution than the currently best found.

8 Chapter 8

Conclusion

A number of lower bounds for OBPP and constructive algorithms for OPP-d
have been described. Some of the ideas for extending Fekete and Schepers
framework have been implemented and in order to test their performance,
a total of 11400 test runs were carried out. As seen in chapter 5 the im-
plemented solvers for d = 2 could not compare to the CSP solver. Even
though some performance can be gained by changing data structures, the
most significant improvements are likely to be obtained by purely algorithmic
optimizations reducing the large amount of redundancy in the dissolvement
based guillotine representation and in the branch-and-bound algorithm for
sticky cuttings.

Open problem 3.11 on page 38 ask if the total time complexity for the
algorithm searching MC topologies is smaller than the total time complexity
for the algorithm searching MD topologies. The original solver by Fekete
and Schepers is known to perform well [FS97c] and as the performance of
the dissolvement based solver did not compare to the CSP based solver in the
computational results presented, chances are that the relaxation of P1 and
the redundancy introduced by MD actually worsened the total time complex-
ity. So even though no formal proof has been made, the above observations
makes it likely that the answer to open problem 3.11 is yes.

The advantage of Fekete and Schepers model is that one single graph holds
a whole class of packings, namely the packings represented by all transitive
orientations of that graph. The CSP based solver does not handle such classes
of equivalence so if some redundancy minimizing changes could be made to
the Fekete and Schepers based solver, chances are that it would then indeed
be able to compare to the CSP solver.

The newly introduced sticky cutting property may become interesting for
several reasons: It is useful in practise, it behaves extreamly nice in a graph

99

100 Conclusion

theoretic model and for the special case k = d = 2 the results can be utilized
in guillotine cuttings. However, further research needs to be made in order
to answer the conjecture and open problem given in chapter 4.

The following items summarize the contributions of this thesis:

• The framework by Fekete and Schepers was extended to handle guillo-
tine cuttings and two versions of the modified algorithm was presented:
One that follows the original framework relatively strictly but ensures
the guillotine property and one in which the guillotine checking exten-
sion is utilized to speed up each iteration.

• A proof for a worst case performance ratio of 2 for the guillotine cut-
table OBPP-2 was given in co-operation with David Pisinger.

• A whole new type of graph theoretically nice behaving sticky cuttings
was introduced and a conjecture given for a worst case performance
ratio of 4 for the sticky cuttable OBPP-2.

• It was shown how the theory from sticky cuttings could be utilized in
conventional guillotine cuttings for k = d = 2.

• Both the sticky cutting algorithm and one of the guillotine algorithms
was implemented. These are hereby the first known solvers to solve
sticky- and guillotine cuttings for arbitrarily large d. Their perfor-
mance could not compare to the CSP solver for d = 2 but as stated,
a significant gain is likely to be obtained by applying the algorithmic
optimizations suggested in section 5.4.1.

• A new redundancy minimizing packing tree representation of guillotine
cuttings was presented along with a brute-force algorithm to traverse
all packing trees.

8.1 Further work

This text left a number of problems open to further research. Below some
ideas for further work are summarized:

1. For guillotine packings some problems are:

(a) Make a formal proof for the worst case performance OPTg

OPT
for d > 2

(open problem 3.6).

8.1 Further work 101

(b) Various relaxations of Fekete and Schepers model for guillotine
cuttings results in different complexity and open problem 3.10,
3.11 and 3.12 try to clarify the impact of various relaxations. Make
a formal proof for the answers to one or more of these problems.

(c) Section 3.3.3 described a brute-force algorithm to traverse all pack-
ing trees. It could be interesting to construct a branch-and-bound
algorithm for this representation.

2. The sticky cutting property is currently quite unexplored, so a general
research in this and a classification of its behavior is still to be done.
Also:

(a) Conjecture 4.3 claims that OPTs

OPT
= 4. Prove it or give a counter

evidence.

(b) Prove or disprove conjecture 4.4 claiming that OPP-d attached
with the sticky cutting requirement is NP-hard.

3. Find a way to measure the quality of both guillotine- and sticky cutting
search nodes in order to be able to test a best-first search strategy.

4. It could be interesting to make some experimental work testing the
suggestions on performance optimization. That is, make a reimple-
mentation in which

(a) the use of data structures are optimized for small data sets.

(b) boxes are enlarged by conservative scales

(c) P1 is reintroduced.

These improvements are almost certain to improve the performance.
As an experiment two versions of this reimplentation could be made:
One searching MD topologies and one searching the less redundant MC

topologies.

102 Conclusion

Bibliography

[BM03] Marco A. Boschetti and Aristide Mingozzi. The two-dimensional
finite bin packing problem. part I: New lower bounds for the
oriented case. 4OR, 1(1):27–42, 2003.

[CRLS01] Thomas H. Cormen, Ronald L. Rivest, Charles E. Leiserson, and
Clifford Stein. Introduction to Algorithms. McGraw-Hill Higher
Education, 2001.

[CW77] N. Christofides and C. Whitlock. An algorithm for two dimen-
sional cutting problems. 25:30–44, 1977.

[Del98] M. Dell’Amico. On the continuous relaxation of packing prob-
lems. Technical report, Dipartimento di Economia Politica, Uni-
versità di Modena, 1998. Materiali di discussione 182.

[DM95] M. Dell’Amico and S. Martello. Optimal scheduling of tasks
on identical parallel processors. ORSA Journal on Computing,
7(2):191–200, 1995.

[DW60] G.B. Dantzig and P. Wolfe. Decomposition principle for linear
programs. Operations Research, 8:101–111, 1960.

[FS97a] S. P. Fekete and J. Schepers. On higher-dimensional packing I:
Modeling. Technical Report 97–288, 1997.

[FS97b] S. P. Fekete and J. Schepers. On more-dimensional packing II:
Bounds. submitted to: Discrete Applied Mathematics, 1997.

[FS97c] S. P. Fekete and J. Schepers. On more-dimensional packing III:
Exact algorithms. submitted to: Discrete Applied Mathematics,
1997.

103

104 Bibliography

[FS01] S. P. Fekete and J. Schepers. New classes of lower bounds for
the bin packing problem. Mathematical Programming, 91:11–31,
2001.

[FS04] Sándor P. Fekete and Jörg Schepers. A combinatorial character-
ization of higher-dimensional orthogonal packing. Math. Oper.
Res., 29(2):353–368, 2004.

[Gol80] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs.
Academic Press, San Diego, 1980.

[LUE83] G. S. LUEKER. Bin packing with items uniformly distributed
over intervals [a,b]. Proceedings 24th Ann. Symp. on Foundations
of Computer Science, pages 289–297, 1983.

[MFNK96] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI
module placement based on rectangle-packing by the sequence
pair. IEEE Trans. on CAD, 15(12):1518–1524, 1996.

[MPV97] S. Martello, D. Pisinger, and D. Vigo. The three-dimensional
bin packing problem. Technical report, 1997. Technical Report
DEIS-OR-97-6, 1997. Available at http://www.deis.unibo.it.

[MPV04] Silvano Martello, David Pisinger, and Daniele Vigo. Algoriths for
general and robot-packable variants of the three-dimensional bin
packing problem. ACM Transactions on Mathematical Software,
2004. Accepted for publication.

[MS97] Ross M. McConnell and Jeremy P. Spinrad. Linear-time tran-
sitive orientation. In SODA ’97: Proceedings of the eighth an-
nual ACM-SIAM symposium on Discrete algorithms, pages 19–
25, Philadelphia, PA, USA, 1997. Society for Industrial and Ap-
plied Mathematics.

[MT90] Silvano Martello and Paolo Toth. Knapsack problems: Algo-
rithms and computer implementations. John Wiley & Sons, Inc.,
New York, NY, USA, 1990.

[MV98] Silvano Martello and Daniele Vigo. Exact solution of the two-
dimensional finite bin packing problem. Manage. Sci., 44(3):388–
399, 1998.

Bibliography 105

[NP04] Stavros D. Nikolopoulos and Leonidas Palios. Hole and anti-
hole detection in graphs. In SODA ’04: Proceedings of the fif-
teenth annual ACM-SIAM symposium on Discrete algorithms,
pages 850–859, Philadelphia, PA, USA, 2004. Society for Indus-
trial and Applied Mathematics.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

[Pis03] David Pisinger. Denser placements in vlsi design obtained in
O(n log log n) time. INFORMS Journal on Computing, 2003. Ac-
cepted for publication.

[PS02] David Pisinger and Mikkel Sigurd. Using decomposition
techniques and constraint programming for solving the two-
dimensional bin packing problem. Technical report, Dept. of
Computer Science, University of Copenhagen, 2002. To appear
in INFORMS Journal on Computing (2005).

[ST96] Guntram Scheithauer and Johannes Terno. A new heuristic for
the pallet loading problem. JORS, 47:511–522, 1996.

[Wan83] P.Y. Wang. Two algorithms for constrained two-dimensional cut-
ting stock problems. Oper. Res., 31:573–586, 1983.

[WL86] D. F. Wong and C. L. Liu. A new algorithm for floorplan design.
In DAC ’86: Proceedings of the 23rd ACM/IEEE conference on
Design automation, pages 101–107, Piscataway, NJ, USA, 1986.
IEEE Press.

[Wol98] L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998.

