
Scalable Query Evaluation
in Relational Databases

Rasmus Resen Amossen

PhD dissertation, November 30, 2010
(Updated version, April 2011)

Supervisor: Rasmus Pagh
IT University of Copenhagen, Denmark

Assessment committee: Thore Husfeldt (chair)
IT University of Copenhagen, Denmark

Peter Boncz
Centrum Wiskunde & Informatica, Netherlands

Rolf Fagerberg
University of Southern Denmark, Denmark

The Efficient Computation research group, IT University of Copenhagen,
Denmark, 2010

ISSN: 1602-3536
ISBN: 978-87-7949235-6
ITU DS: D-2011-69

Abstract

The scalability of a query depends on the amount of data that needs to be
accessed when computing the answer. This implies three immediate general
strategies for improving query performance: decrease the amount of data
(including intermediate results) to be accessed by accessing it smarter; de-
crease the amount by simply reducing the data quantity in the first place;
and increase the amount of data accessed per time unit. This PhD disserta-
tion presents four research results, covering each of these three approaches.

The first three results focus on variations of the highly applicable query
class join-project, which is a join of two database tables followed by a dupli-
cate eliminating projection. Join-projects are equivalent to sparse Boolean
matrix multiplication and frequent pair mining (the special case of frequent
itemset with itemset cardinality limited to 2).

We describe a new output sensitive algorithm for join-projects which
has small intermediate results on worst-case inputs, and in particular, is
efficient in both the RAM and I/O model. The algorithm uses the output
size to deduce its computation strategy, and this introduces a chicken-and-
egg problem: how do we obtain the output size without actually computing
the output? This question is answered in another result in which we obtain
a (1± ε) approximation of the output size in expected linear time and I/O
for ε > 1/ 4

√
n.

In another result we address the throughput itself by using the massive
parallel capabilities of graphics processing units (GPUs) to handle the pair
mining problem. For that we present a new data structure, BatMap, which
is a novel vertical data layout that is particularly well suited for parallel
processing.

The last result deals with the general problem of reducing the quantity
of data that must be accessed for answering any given query on a row store
RDBMS. We present a quadratic integer program formulation of the verti-
cal partitioning problem for OLTP workloads in a distributed environment.
This quadratic optimization problem is NP-hard so we also describe a ran-
domized heuristic that empirically has shown to be reliable in sense of both
speed and cost reduction.

i

ii

Preface

This text constitutes my dissertation for the PhD degree in computer science
at the IT University of Copenhagen. It is the result of work done from
2007 to 2010 under supervision of Rasmus Pagh. The PhD defense was
held, and passed, February 14 2011, and afterwards I received a positive
evaluation report from the assessment committee. In this updated version
of the dissertation I have adjusted some details according to the suggestions
and comments in this report.

I would like to express my gratitude to my advisor, Rasmus Pagh, for his
interest, support, and insightful discussions throughout the years. I am also
pleased to thank Daniel Abadi for letting me visit his department at Yale
for two months in 2009. Further, I would like to thank my wife, Line, and
my two sons, Elias and Noah, for their patience and understanding during
occasionally stressful periods preceding article submission deadlines.

Rasmus Resen Amossen
Copenhagen, April 2011

iii

iv

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Structure . 2

I Finding connected pairs 5

2 Overview 7

3 Size estimation 9
3.1 Introduction . 12
3.2 Our algorithm . 16
3.3 Distinct sketches . 22
3.4 Experiments . 25
3.5 Conclusion . 27

4 Sparse Boolean matrix multiplication 29
4.1 Introduction . 31
4.2 The classical algorithm . 35
4.3 Computing the join-project 36
4.4 Conclusion . 42

5 Using the GPU 43
5.1 Introduction . 44
5.2 BatMaps . 48
5.3 Implementation . 53
5.4 Experiments . 56
5.5 Conclusion . 62

6 Perspectives 65
6.1 Triangles . 65
6.2 Chain joins with projection 69

v

vi Contents

II Vertical partitioning 71

7 Vertical partitioning 73
7.1 Introduction . 74
7.2 A linearized QP approach . 78
7.3 The SA solver – a heuristic approach 82
7.4 Further improvements . 83
7.5 Computational results . 84
7.6 Conclusion . 91

Chapter 1

Introduction

In 2006, Pagh and Pagh [75] presented an algorithm for computing an acyclic
join of k database relations in a way that scales well in k. Their result led
to two hypothesises:

Hypothesis 1: Queries that are a combination of an acyclic join and a
duplicate eliminating projection can be evaluated in a way that scales
to a large number of relations.

Hypothesis 2: Join queries whose join graph has constant size and con-
tains a single cycle can be evaluated in a scalable way in the sense that
internal memory size and external memory speed need to grow only
linearly with the data size.

It was originally a goal to initialize this PhD project with an investigation of
these two hypotheses. However, it quickly became clear, that computing an
acyclic join followed by a duplicate eliminating projection (in the following
denoted a join-project) is equivalent to computing a sparse Boolean matrix
multiplication—a problem that has been studied intensively for decades.
Also, we can compute a join-project of k relations as a sequence of matrix
multiplications. As we shall see, Boolean matrix multiplication is unlikely
to scale well in k, so Hypothesis 1 is unlikely to hold as well. The smallest
possible join graph containing a single cycle is a simple three-cycle. Unfor-
tunately, this simple example can also be reduced to the problem of comput-
ing a Boolean matrix multiplication, and the problem becomes increasingly
complex for join graphs with larger cycles.

With Hypothesis 2 being more complicated than Hypothesis 1, the focus
therefore changed from investigation of the two hypotheses to a broader
research on join-project related algorithms and data structures, and luckily
we were able to obtain some results. First, we presented an output sensitive
algorithm for join-projects, in the sense that the run time is defined by the
output size. It might sound counter intuitive to require knowledge of the size
of the output before it is actually computed, but nonetheless we presented

1

2 Chapter 1. Introduction

an algorithm for efficiently estimating this size with high accuracy and high
confidence. In a third result, we focued on a way to compute join-projects
efficiently using modern GPUs as computation devices, and we presented
a new data layout that supports a high degree of parallel processing as
required by the parallel nature of GPUs.

Simultanously with the research in join-projects, I followed, with big
interest, another research project on a paradigm shifting database system:
H-store [92]. In 2009 I had the privilege of visiting Daniel Abadi (a co-
researcher in the H-store project) and his database research group at the
Yale university in New Haven, CT, USA. During the stay at Yale, I worked
with partitioning strategies for H-Store, and this led to a paper on a model
and a heuristic for vertical partitioning in databases with an H-store like
architecture.

1.1 Contributions

The contributions of this PhD are collected in four papers:

Chapter 3 is an extension of the paper Better Size Estimation for Sparse
Matrix Products [10] presented at the APPROX/RANDOM 2010 con-
ference in Barcelona, Spain. The paper was written in collaboration
with Rasmus Pagh and Andrea Campagna.

Chapter 4 elaborates on the paper Faster Join-Projects and Sparse Matrix
Multiplications [8] presented at the 12th International Conference on
Database Theory (ICDT 2009) in St. Petersburg, Russia. It was
written in collaboration with Rasmus Pagh.

Chapter 5 elaborates on the paper A New Data Layout For Set Intersec-
tion on GPUs [9], presented at the 25th IEEE International Paral-
lel & Distributed Processing Symposium (IPDPS 2011) in Anchorage
(Alaska), USA. It was written in collaboration with Rasmus Pagh.

Chapter 7 contains the paper Vertical partitioning of relational OLTP
databases using integer programming [7] presented at the 5th Interna-
tional Workshop on Self Managing Database Systems (SMDB 2010),
Long Beach, California, USA.

1.2 Structure

The remainder of the text is structured as follows. Part I covers everything
related to the research on join-projects, and Part II contains a single chapter
about the result on vertical partitioning. Part I furthermore contains an
introduction giving a general overview of join-projects and related problems.

1.2. Structure 3

Following this are three papers that each elaborates on a research paper, and
Part I concludes with a chapter that aims to draw some broader perspectives
to the topics addressed in the papers.

4 Chapter 1. Introduction

Part I

Finding connected pairs

5

Chapter 2

Overview

The fundamental and relevant problem og finding pairs of related entities in
datasets often occurs in multiple disguises and has therefore frequently been
addressed in algorithm and data mining research. Below we briefly describe
four variations of the problem.

Sparse Boolean matrix multiplication: Consider two n×n sparse Bool-
ean matrices M ′ and M ′′. We are interested in the Boolean product
M ′M ′′ where, for row r and column c, we have (M ′M ′′)r,c = 1 if∑

i≤nM
′
r,iM

′′
i,c > 0. As described below, this product can be com-

puted in less than O(n3) time.

Join-project: Consider two database tables in the general form R1 = (a, b)
and R2 = (b, c) sharing a common attribute b, and consider a join
of the two tables followed by a duplicate eliminating projection that
projects away the join attribute. In relational algebra this operation
is written πa,c(R1 1 R2). To see that this problem is equivalent to
that of Boolean matrix multiplication, represent each of R1 and R2 as
affinity matrices, connecting b values to a and c values, respectively.
Section 4.3 on page 36 explains this in further detail.

Frequent itemset: In the frequent itemset problem we are given a set of
transactions T1, . . . , Tm ⊆ {1, . . . , n}. Each transaction holds one or
more of n possible items, and the challenge is now to find the subsets S
where S ⊆ Ti for at least two i. S is then said to have support at least
two among the transactions. If we add the restriction that |S| = 2
(i.e. only item pairs are considered), the problem becomes equivalent
to sparse Boolean matrix multiplication. As with join-projects, this
can be seen by using an affinity matrix to represent the relationship
between transactions and items.

Relating pairs: The general problem of relating pairs can often be reduced
to sparse Boolean matrix multiplication if grouping of pairs is based

7

8 Chapter 2. Overview

on equality of a common property. Examples include finding friends
of friends in social networks, actors playing together in at least one
movie, and students that have ever attended a course together.

In the following chapters we approach this class of problems from three
perspectives. Chapter 3 does not deal with the computation of the result
itself, but instead describes how to compute an estimate of its size. This
is relevant in multiple situations: first of all, as the computation of the
output can be very time and space consuming, it may be desirable to know
in advance if the problem instance in question is practically solvable on
the available hardware; secondly, the output size can also be used as a
parameter for matrix multiplication algorithms (we present an example of
such an algorithm in Chapter 4); last, for matrix multiplications involving
more than two matrices, the optimal multiplication order strongly depends
on the size of the intermediate sub-products.

Our second approach to pair generation, described in Chapter 4, is an
output sensitive algorithm for sparse Boolean matrix multiplication. The
algorithm can be thought of as a hybrid between classical pair generation,
using a merge-join, and any matrix multiplication algorithm. Given the
expected output size, it divides the input into two classes, depending on
density, and forms the final output by combining the results from a merge-
join of the sparse class, and a matrix multiplication of the dense class.

In Chapter 5 we explore the simple, yet powerful, architecture of graph-
ics processing units (GPUs) supporting massive parallelism. We present
a new space efficient data structure called BatMaps for representing and
intersecting sets. With this data structure we exploit the parallel capabil-
ities of GPUs, and we prove that the data structure is actually scalable in
practice—this time from the perspective of the frequent itemset problem.

Chapter 3

Size estimation

This chapter is an extension of the paper Better Size Estimation for Sparse
Matrix Products [10] presented at the APPROX/RANDOM 2010 conference
in Barcelona, Spain. The paper was written in collaboration with Rasmus
Pagh and Andrea Campagna. Some of the text relies heavily on a few
elements from probability theory, so in order to ease reading, we will briefly
mention these below. More elaborate explanations can be found in [35, 65].

The mean or expected value (not to be confused with the most probable
value) of a discrete random variable X is denoted E[X], and is simply the
weighted sum of all possible values in the relevant universe U and their
probabilities, that is: E[X] =

∑
x∈U xPr[X = x].

Theorem 3.1 The expected value operator E[·] is linear.

For a random variable X we use the variance Var(X) to describe how far
values in U lie from their mean. By definition, the variance is given as
follows:

Definition 3.2 (Variance) Var(X) = E[(X −E[X])2] = E[X2]−E[X]2.

The estimation method to be presented is a randomized algorithm, im-
plying that two consecutive computations are likely to produce different
estimates. Therefore, we will need a couple of tools to bound the error
probability. The first tool, Chebychev’s inequality, states, that in any data
sample or probability distribution, the majority of the values are close to
the mean value when the variance is small. More formally:

Theorem 3.3 (Chebyshev’s inequality) For any α > 0,

Pr[|X −E[X]| ≥ α] ≤ Var(X)

α2
.

In our specific case, we will use the inequality to show that the core estima-
tion algorithm guarantees a result within a factor (1± ε) from the real size
with error probability δ = 1/3.

9

10 Chapter 3. Size estimation

We would like to decrease this error probability arbitrarily. This can be
done by repeating the experiments and utilizing a Chernoff bound which
bounds the probability that a majority of independent discrete indicator
random variables (Bernoulli random variables) take a given value.

Theorem 3.4 (Chernoff bound) Let X1, . . . , Xk be independent random
Bernoulli variables and let X =

∑
iXi. Also, let µ denote E[X]. Then, for

any α > 0,

Pr[X < (1− α)µ] <

(
e−α

(1− α)(1−α)

)µ
< e−µα

2/2.

In our case we will have k Bernoulli random variables, Xi, corresponding
to k estimates where Xi = 1 if estimate i is a (1 ± ε) estimate and Xi = 0
otherwise. As E[X] = µ = 2k/3 we can ask for the probability that at least
half of the estimates are good by setting α = 1/4:

Pr[X < (1− 1/4)2k/3] = Pr[X < k/2] < e−k/48.

In other words, the probability δ of getting fewer than k/2 estimates within
(1±ε) of the actual value decreases exponentially with the number of exper-
iments k. Consequently, the number k of experiments needed to achieve any
given error probability δ is in the order of O(log(1/δ)), and knowing that a
majority of the estimates are within the desired bound, we can report the
estimate found at the median.

Last, the chapter also makes use of pairwise independence of families
of hash functions. This means, that the distribution of the image of any
randomly chosen function from this family can be considered random. More
formally:

Definition 3.5 (Pairwise independence) Two random variables X and
Y in a universe U are pairwise independent if Pr[X ∈ x] = Pr[X ∈ x|Y ∈
y] for any x, y ⊆ U . A hash function h : D → I for any domain D and
image I is pairwise independent, if for any two a, b ∈ D and i, j ⊆ I, it
satisfies

Pr[h(a) ∈ i] = Pr[h(a) ∈ i|h(b) ∈ j].

This definition implies that, if X and Y are pairwise independent, then

Pr[X ∈ x ∧ Y ∈ y] = Pr[X ∈ x]Pr[Y ∈ y]

for x, y ∈ U .

Lemma 3.6 Let h1, h2 : U → [0; 1] be pairwise independent hash functions,
and define h : U × U → [0; 1] by (x, y) 7→ (h1(x) − h2(y)) mod 1. Then h
is also pairwise independent.

11

Proof First, let X = h(a, b1) and Y = h(a, b2) for a, b1, b2 ∈ U . Then
for any x, y ⊆ [0; 1] we have

Pr[X ∈ x ∧ Y ∈ y] =

Pr[(h1(a)− h2(b1)) mod 1 ∈ x ∧ (h1(a)− h2(b2)) mod 1 ∈ y].

h1(a) can be treated as a constant c ∈ [0; 1] and since h2 is pairwise inde-
pendent we have

Pr[(h1(a)− h2(b1)) mod 1 ∈ x ∧ (h1(a)− h2(b2)) mod 1 ∈ y] =

Pr[(c− h2(b1)) mod 1 ∈ x]Pr[(c− h2(b2)) mod 1 ∈ y]

which shows the pairwise independence for this case. Similar arguments can
be applied for X = h(a1, b) and Y = h(a2, b) as well as X = h(a1, b1) and
Y = h(a2, b2). 2

Lemma 3.7 If Y = X1+· · ·+Xn is a sum of pairwise independent Bernoulli
variables, then Var(Y) ≤ E[Y].

We use the same techniques as in [85] to prove the lemma.

Proof AsXi andXj are pairwise independent, E[XiXj] = E[Xi]E[Xj].
Thus,

E[Y 2] = E[(X1 + · · ·+Xn)2]

= E

[
n∑
i=1

X2
i

]
+ E

∑
i 6=j

XiXj

=

n∑
i=1

E[X2
i] +

∑
i 6=j

E[XiXj]

=
n∑
i=1

E[X2
i] +

∑
i 6=j

E[Xi]E[Xj].

Also

E[Y]2 = E

[
n∑
i=1

Xi

]2

=

(
n∑
i=1

E[Xi]

)2

=

n∑
i=1

E[Xi]
2 +

∑
i 6=j

E[Xi]E[Xj].

12 Chapter 3. Size estimation

Therefore,

Var(Y) = E[Y 2]−E[Y]2

=
n∑
i=1

E[X2
i] +

∑
i 6=j

E[Xi]E[Xj]−

 n∑
i=1

E[Xi]
2 +

∑
i 6=j

E[Xi]E[Xj]

=

n∑
i=1

E[X2
i]−

n∑
i=1

E[Xi]
2 =

n∑
i=1

E[Xi]−
n∑
i=1

E[Xi]
2

≤
n∑
i=1

E[Xi] = E[Y].

2

3.1 Introduction

In this chapter we will consider a d × d Boolean matrix as the subset of
{1, . . . , d} × {1, . . . , d} corresponding to the nonzero entries. The product
of two matrices R1 and R2 contains (i, k) if and only if there exists j such
that (i, j) ∈ R1 and (j, k) ∈ R2. The matrix product can also be expressed
using basic operators of relational algebra: R1 1 R2 denotes the set of tuples
(i, j, k) where (i, j) ∈ R1 and (j, k) ∈ R2, and the projection operator π can
be used to compute the tuples (i, k) where there exists a tuple of the form
(i, ·, k) in R1 1 R2. Since most of our applications are in database systems
we will primarily use the notation of relational algebra.

We consider the following question: given relations R1 and R2 with
schemas (a, b) and (b, c), estimate the number z of distinct tuples in the
relation Z = πac(R1 1 R2). This problem has been referred to in the
literature as join-project or join-distinct1. We define n1 = |R1|, n2 = |R2|,
and n = n1 + n2. As observed above, the join-project problem is equivalent
to the problem of estimating the number of non-zero entries in the product
of two Boolean matrices, having n1 and n2 non-zero entries, respectively.

In recent years there has been several papers presenting new algorithms
for sparse matrix multiplication [8, 61, 105]. In particular, these algorithms
can be used to implement Boolean matrix multiplication. However, even if
matrix multiplication could be done in quadratic time, which is the lower
bound conjectured by many, the proposed algorithms all have substantially
superlinear time complexity in the input size n: on worst-case inputs they

1Readers familiar with the database literature may notice that we consider projections
that return a set, i.e., that projection is duplicate eliminating. We also observe that any
equi-join followed by a projection can be reduced to the case above, having two variables
in each relation and projecting away the single join attribute. Thus, there is no loss of
generality in considering this minimal case.

3.1. Introduction 13

require time ω(n4/3), even when z = O(n). Observation 4.7 on page 40 will
show an example of this based on an algorithm for matrix multiplication
that we will develop in Chapter 4.

In an influential work, Cohen [23] presented an estimation algorithm
that, for any constant error probability δ > 0, and any ε > 0, can compute
a 1±ε approximation of z = |Z| in time O(n/ε2). Cohen’s algorithm applies
to the more general problem of computing the size of the transitive closure
of a graph, which an extension of the edge set so that we add an edge from
u to v if there exists a path from u to v.

Our main result is that in the special case of sparse matrix product size
estimation, we can improve this to expected time O(n) for ε > 4/ 4

√
z. This

means that we have a linear time algorithm for relative error where Cohen’s
algorithm would use time O(n

√
z).

Approach. To build intuition on the size estimation question, consider
the sets Aj = {i |(i, j) ∈ R1} and Cj = {k |(j, k) ∈ R2}. By definition,
Z =

⋃
j Aj × Cj . The size of Z depends crucially on the extent of overlap

among the sets {Aj×Cj}j . However, the total size of these sets may be much
larger than both input and output (see [8]), so any approach that explicitly
processes them is unattractive.

The starting point for our improved estimation algorithm is a well-known
algorithm for estimating the number of distinct elements in a data streaming
context [11]. (We remark that the idea underlying this algorithm is similar to
that of Cohen [23].) Our main insight is that this algorithm can be extended
such that a set of the form Aj × Cj can be added to the sketch in expected
time O(|Aj |+ |Cj |), i.e., without explicitly generating all pairs. The idea is
to use a hash function that is particularly well suited for the purpose: suf-
ficiently structured to make hash values easy to handle algorithmically, and
sufficiently random to make the analysis of sketching accuracy go through.

3.1.1 Motivation

Cohen [24] investigated the use of the size estimation technique in sparse
matrix computations. In particular, it can be used to find the optimal order
of multiplying sparse matrices, and in memory allocation for sparse matrix
computations.

In addition, we are motivated by applications in database systems, where
size estimation is an important part of query optimization. Examples of
database queries that correspond to Boolean matrix products are:

• A query that computes all pairs of people in a social network with a
distance 2 connection (“possible friends”).

• A query to compute all director-actor pairs who have done at least one
movie together.

14 Chapter 3. Size estimation

• In a business database with information on orders, and a categorization
of products into types, compute the relation that contains a tuple (c, p)
if customer c has made an order for a product of type p.

As a final example, we consider a fundamental data mining task. Given
a list of sets, the famous Apriori data mining algorithm [4] finds frequent
item pairs by counting the number occurrences of item pairs where each
single element is frequent. So if R1 = R2 denotes the relationship between
high-support (i.e., frequent) items and sets in which they occur, Z is exactly
the pairs of frequent items, and the number of distinct items in Z determines
the space usage of Apriori. Since Apriori may be very time consuming, it is
of interest to establish whether sufficient space is available before choosing
the support threshold and running the algorithm.

3.1.2 Further related work

JD sketch.

Ganguly et al. [39] previously considered techniques that compute a data
structure (a sketch) for R1 and R2 (individually), such that the two sketches
suffice to compute an approximation of z.

Define na = |{i | ∃j : (i, j) ∈ R1}| and nc = |{k | ∃j : (j, k) ∈ R2}|.
Ganguly et al. show that for any constant c and any β, a sketching method
that returns a c-approximation with probability Ω(1) whenever z ≥ β must,
on a worst-case input, use expected space

Ω(min(n1 + n2, nanc(n1/na + n2/nc)/β))

= Ω(min(n1 + n2, (n1nc + n2na)/β)) bits.

The lower bound proof applies to the case where n1 = n2, na = nc, and
z < na + nc. We note that [39] claims a stronger lower bound, but their
proof does not establish a lower bound above n1 + n2 bits. Ganguly et
al. present a sketch whose worst-case space usage matches the lower bound
times polylogarithmic factors (while not stated in [39], the trivial sketch
that stores the whole input can be used to nearly match the first term in
the minimum).

In Section 3.3 we analyze a simple sketch, previously considered in other
contexts by Gibbons [41] and Ganguly and Saha [38]. It similarly matches
the above worst-case bound, but the exact space usage is incomparable to
that of [39].

The focus of [39] is on space usage, and so the time for updating sketches,
and for computing the estimate from two sketches, is not discussed in the
paper. Looking at the data structure description we see that the update
time grows linearly with the quantity they call s1, which is Ω(n) in the
worst case. Also, the sketch uses a number of summary data structures

3.1. Introduction 15

that are accessed in a random fashion, meaning that the worst case number
of I/Os is at least Ω(n) unless the sketch fits internal memory. By the
above lower bound we see that keeping the sketch in internal memory is not
feasible in general. In contrast, the sketch we consider allows collection and
combination of sketches to be done efficiently in linear time and I/O.

Distinct elements and distinct paths estimation.

Our work is related in terms of techniques to papers on estimating the num-
ber of distinct items in a data stream (see [11] and its references). However,
our basic estimation algorithm does not work in a general streaming model,
since it crucially needs the ability to access all tuples with a particular value
on the join attribute together.

Ganguly and Saha [38] consider the problem of estimating the number of
distinct vertex pairs connected by a length-2 path in a graph whose edges are
given as a data stream of n edges. This corresponds to size estimation for the
special case of squaring a matrix (or self-join in database terminology). It
is shown that space

√
n is required, and that space roughly O(n3/4) suffices

for constant ε (unless there are close to n connected components). The
estimation itself is a join-distinct size estimation of a sample of the input
having size no smaller than O(n3/4/ε2). Using Cohen’s estimation algorithm
this would require time O(n3/4/ε4), so this is O(n) time only for ε > 1/ 16

√
n.

Join synopses.

Acharya et al. [1] proposed so-called join synopses that provide a uniform
sample of the result of a join. While this can be used to estimate result sizes
of a variety of operations, it does not seem to yield efficient estimates of join-
project sizes. The reason is that a standard uniform sample is known to be
inefficient for estimating the number of distinct values [20]. In addition,
Acharya et al. assume the presence of a foreign-key relationship, i.e., that
each tuple has at most one matching tuple in the other table(s), which is
also known as a snow flake schema. Our method has no such restriction.

Distinct sampling.

Gibbons [41] considered different samples that can be extracted by a scan
over the input, and proposed distinct samples, which offer much better guar-
antees with respect to estimating the number of distinct values in query
results. Gibbons shows that this technique applies to single relations, and
to foreign key joins where the join result has the same number of tuples
as one of the relations. In Section 3.3 we show that the distinct samples,
with suitable settings of parameters, can often be used in our setting to get
an accurate estimate of z = |Z|. The processing of two distinct samples to

16 Chapter 3. Size estimation

produce the estimate consists of running the efficient estimation algorithm
of Section 3.2 on the samples, meaning that this is time- and I/O-efficient.

3.2 Our algorithm

The task is to estimate the size z of Z = πac(R1 1 R2). We may assume that
attribute values are O(log n)-bits integers, since any domain can be mapped
into this one using hashing, without changing the join result size with high
probability. When discussing I/O bounds, B is the number of such integers
that fits in a disk block. In linear expected time (by hashing) or sort(n)
I/Os we can cluster the relations according to the value of the join attribute
b.

In what follows, k is a positive integer parameter that determines the
space usage and accuracy of our method. The technique used is to compute
the kth smallest value v of a hash function h(x, y), for (x, y) ∈ Z. Analo-
gously to the result by Bar-Yossef et al. [11] we can then use z̃ = k/v as an
estimator for z.

Our main building block is an efficient iteration over all tuples (x, ·, y) ∈
R1 1 R2 for which h(x, y) is smaller than a carefully chosen threshold p,
and is therefore a candidate for being among the k smallest hash values.
The essence of our result lies in how the pairs being output by this iteration
are computed in expected linear time. We also introduce a new buffering
trick to update the sketch in expected amortized O(1) time per pair. In a
nutshell, each time k new elements have been retrieved, they are merged
using a linear time selection procedure with the previous k smallest values
to produce a new (unordered) list of the k smallest values.

Theorem 3.8 Let R1(a, b) and R2(b, c) be relations with n tuples in total,
and define z = |πac(R1 1 R2)|. Let ε, 0 < ε < 1

4 be given. There are algo-
rithms that run in expected O(n) time on a RAM, and expected O(sort(n))
I/Os in the cache-oblivious model, and output a number z̃ such that for
k = 9/ε2:

• Pr[(1− ε)z < z̃ < (1 + ε)z] ≥ 2/3 when z > k2, and

• Pr[z̃ < (1 + ε)k2] ≥ 2/3 when z ≤ k2.

The error probability can be reduced from 1/3 to δ by the standard technique
of doing O(log(1/δ)) runs and taking the median (the analysis follows from
a Chernoff bound). We remark that this can be done in such a way that the
O(log(1/δ)) factor affects only the RAM running time and not the number
of I/Os. For constant relative error ε > 0 we have the following result:

Theorem 3.9 In the setting of Theorem 3.8, if ε is constant there are algo-
rithms that run in expected O(n) time on a RAM, and expected O(sort(n))

3.2. Our algorithm 17

I/Os in the cache-oblivious model, that output z̃ such that Pr[(1−ε)z < z̃ <
(1 + ε)z] = 1−O(1/

√
n).

The error probability can be reduced to n−c for any desired constant c by
running the algorithms O(c) times, and taking the median as above.

3.2.1 Finding pairs

For B = πb(R1) ∪ πb(R2) and each i ∈ B let Ai = πa(σb=i(R1)) and Ci =
πc(σb=i(R2)). We would like to efficiently iterate over all pairs (x, y) ∈
Ai × Ci, i ∈ B, for which h(x, y) is smaller than a threshold p. This is done
as follows (see Algorithm 1 for pseudocode).

For a set U , let h1, h2 : U → [0; 1] be hash functions chosen independently
at random from a pairwise independent family, and define h : U×U → [0; 1]
by2

h(x, y) = (h1(x)− h2(y)) mod 1.

According to Lemma 3.6 on page 10, h is also a pairwise independent hash
function — a property we will utilize later. Now, conceptually arrange the
values of h(x, y) in an |Ai| × |Ci| matrix, and order the rows by increasing
values of h1(x), and the columns by increasing values of h2(y). Then the
values of h(x, y) will decrease (modulo 1) from left to right, and increase
(modulo 1) from top to bottom.

For each i ∈ B, we traverse the corresponding |Ai| × |Ci| matrix by
visiting the columns from left to right, and in each column t finding the
row s̄ with the smallest value of h(xs̄, yt). Values smaller than p in that
column will be found in rows subsequent to s̄. When all such values have
been output, the search proceeds in column t + 1. Notice, that if h(xs̄, yt)
was the minimum value in column t, then the minimum value in column
t+ 1 is found by increasing s̄ until h(xs̄, yt+1) < h(x(s̄−1) mod |Ai|, yt+1). We
observe that the algorithm is robust to decreasing the value of the threshold
p during execution, in the sense that the algorithm still outputs all pairs
with hash value at most p.

3.2.2 Estimating the size

While finding the relevant pairs, we will use a technique that allows us to
maintain the k smallest hash values in an unordered buffer instead of using
a heap data structure (lines 14–18 in Algorithm 1). In this way we are
able to maintain the k smallest hash values in constant amortized time per
insertion in the buffer, eliminating the log k factor implied by the heap data
structure.

2We observe that this is different from the “composable hash functions” used by Gan-
guly et al. [39].

18 Chapter 3. Size estimation

Algorithm 1 Pseudocode for the size estimator.

1: procedure DisItems(p, ε)
2: k ← d9/ε2e
3: F ← ∅
4: for i ∈ B do
5: x← Ai sorted according to h1-value
6: y ← Ci sorted according to h2-value
7: s̄← 1
8: for t := 1 to |Ci| do
9: while h(xs̄, yt) > h(x(s̄−1) mod |Ai|, yt) do . Find s̄ s.t. h(xs̄, yt) is min.

10: s̄← (s̄ + 1) mod |Ai|
11: end while
12: s← s̄
13: while h(xs, yt) < p do . Find all s where h(xs, yt) < p
14: F ← F ∪ {(xs, yt)}
15: if |F | = k then . Buffer filled, find smallest hash values in S ∪ F
16: (p, S)← Combine(S, F)
17: F ← ∅
18: end if
19: s← (s + 1) mod |Ai|
20: end while
21: end for
22: end for
23: (p, S)← Combine(S, F)
24: if |S| = k then
25: return “z̃ = k

p
and z̃ ∈ [(1± ε)z] with probability 2/3”

26: else
27: return “z̃ = k2, z ≤ k2 with probability 2/3”
28: end if
29: end procedure

30: procedure Combine(S, F)
31: v ← Rank(h(S) ∪ h(F), k) . Rank(·, k) returns the kth smallest value
32: S ← {x ∈ S ∪ F |h(x) ≤ v}
33: return (v, S)
34: end procedure

Let S and F be two unordered sets containing, respectively, the k small-
est hash values seen so far (all, of course, smaller than p), and the latest
up to k elements seen. We avoid duplicates in S and F (i.e., the sets are
kept disjoint) by using a simple hash table to check for membership before
insertion. Whenever |F | = k the two sets S and F are combined in order
to obtain a new sketch S. This is done by finding the median of S ∪ F ,
which takes O(k) time using either deterministic methods (see [32]) or more
practical randomized ones [48].

At each iteration the current kth smallest value in S may be smaller
than the initial value p, and we use this as a better substitute for the initial
value of p. However, in the analysis below we will upper bound both the
running time and the error probability using the initial threshold value p.

3.2. Our algorithm 19

3.2.3 Time analysis

We split the time analysis into two parts. One part accounts for iterations
of the inner while loop in lines 13–20, and the other part accounts for every-
thing else. We first consider the RAM model, and then outline the analysis
in the cache-oblivious model.

Inner while loop. Observe that for each iteration, one pair (xs, yt) is
added to F (if it is not already there). For each t ∈ Ci, p|Ai| elements
are expected to be added since each pair (xs, yt) is added with probability
p. This means that the expected total number of iterations is O(p|Ai||Ci|).
Each call to Combine costs time O(k), but we notice that there must be at
least k iterations between successive calls, since the size of F must go from
0 to k. Inserting a new value into F costs O(1) since the set is not sorted.
Hence, the total cost of the inner loop is O(p|Ai||Ci|).

Remaining cost. Consider the processing of a single i ∈ B in Algorithm 1.
The initial sorting of hash values can be done with bucket sort requiring ex-
pected time O(|Ai|+|Ci|) since the numbers sorted are pairwise independent
(by the same analysis as for hashing with chaining).

For the iteration in lines 9–11 observe that h(xs̄, yt) is monotone modulo
1, and we have at most a total of 2|Ai| increments of s̄ among all t ∈ Ci.
Thus, the total number of iterations is O(|Ai|), and the total cost for each
i ∈ B is O(|Ai|+ |Ci|).

The time for the final call to Combine is dominated by the preceding
cost of constructing S and F .

I/O efficient variant. As for I/O efficiency, notice that a direct imple-
mentation of Algorithm 1 may cause a linear number of cache misses if Ai
and Ci do not fit into internal memory. To get an I/O-efficient variant we
use a cache-oblivious sorting algorithm, sorting R1 according to (b, h1(a)),
and R2 according to (b, h2(c)), such that the sorting steps for each i ∈ B is
replaced by one global sorting step.

The rest of the algorithm works directly in a cache-oblivious setting.
To see this, notice that it suffices to keep in internal memory the two input
blocks that are closest to each of the pointers s, t, and s̄. The cache-oblivious
model assumes the cache to behave in an optimal fashion, so also in this
model there will be Ω(B) operations between cache misses, and O(n/B)
I/Os, expected, in total.

Lemma 3.10 Suppose R1(a, b) and R2(b, c) are relations with n tuples in
total. Let p > 0 and ε > 0 be given. Then Algorithm 1 runs in expected
O(n+

∑
i p|Ai||Ci|) time and O(1/ε2) space on a RAM, and can be modified

to use expected O(sort(n)) I/Os in the cache-oblivious model.

20 Chapter 3. Size estimation

Choice of threshold p.

We would like a value of p that ensures the expected processing time is O(n).
At the same time p should be large enough that we expect to reach line 25
where an exact estimate is returned (except possibly in the case where z is
small).

Lemma 3.11 Let j ∈ B satisfy |Ai||Ci| ≤ |Aj ||Cj | for all i ∈ B. Then p =
min(1/k, k/(|Aj ||Cj |)) gives an expected O(n) running time for Algorithm 1.

Proof We argue that for each i, p|Ai||Ci| ≤ max(|Ai|, |Ci|), which by
Lemma 3.10 implies running time

O(n+
∑
i

p|Ai||Ci|) = O(n+
∑
i

max(|Ai|, |Ci|)) = O(n).

Suppose first that |Ai||Ci| ≥ k2. Then p = k/(|Aj ||Cj |) and p|Ai||Ci| ≤ k ≤√
|Ai||Ci| ≤ max(|Ai|, |Ci|). Otherwise, when |Ai||Ci| < k2, we have p ≤ 1/k

and p|Ai||Ci| = |Ai||Ci|/k ≤ max(|Ai|, |Ci|). 2

We note that when R1 and R2 are sorted according to b, the value of
p specified above can be found by a simple scan over both inputs. Our
experiments indicate that in practice this initial scan is not needed, see
Section 3.4 for details.

3.2.4 Error probability

Theorem 3.12 Let h be a pairwise independent hash function. Suppose we
are provided with a stream of elements N with h(x) < v for all x ∈ N .
Further, let ε, 0 < ε < 1

4 be given and assume that p ≥ min
(
k
2z ,

1
k

)
, where

k ≥ 9/ε2, and z is the number of distinct items in N . Then Algorithm 1
produces an approximation z̃ of z such that

• Pr[(1− ε)z < z̃ < (1 + ε)z] ≥ 2/3 for z > k2, and

• Pr[z̃ < (1 + ε)k2] ≥ 2/3 for z ≤ k2.

Proof The error probability proof is similar to the one that can be
found in [11], with some differences and extensions. We bound the error
probability of three cases: the estimate being smaller/larger than the multi-
plicative error bound, and the number of obtained samples being too small.

Estimate too large. Let us first consider the case where z̃ > (1 + ε)z,
i.e. the algorithm overestimates the number of distinct elements. This hap-
pens if the stream N contains at least k entries smaller than k/(1 +ε)z. For
each pair (a, c) ∈ Z define an indicator random variable X(a,c) as

X(a,c) =

{
1 h(a, c) < k/(1 + ε)z

0 otherwise

3.2. Our algorithm 21

That is, we have z such random variables for which the probability of
X(a,c) = 1 is exactly k/(1 + ε)z and E[X(a,c)] = k/(1 + ε)z. Now define Y =∑

(a,c)∈Z X(a,c) so that E[Y] = E[
∑

(a,c)∈Z X(a,c)] =
∑

(a,c)∈Z E[X(a,c)] =
k/(1 + ε). By the pairwise independence of the X(a,c) we also get Var(Y) ≤
k/(1+ε) due to Lemma 3.7. Using Chebyshev’s inequality [66] we can bound
the probability of having too many pairs reported:

Pr [Y > k] ≤ Pr
[
|Y −E[Y]| > k − k

1+ε

]
≤ Var[Y](

k − k
1+ε

)2 ≤
k/(1 + ε)(
k − k

1+ε

)2 ≤
1
6

since k ≥ 9/ε2.
Estimate too small. Now, consider the case where z̃ < (1 − ε)z which

happens when at most k hash values are smaller than k/(1−ε)z and at least
k hash values are smaller than p. Define X ′(a,c) as

X ′(a,c) =

{
1 h(a, c) < k/(1− ε)z
0 otherwise

so that E[X ′(a,c)] = k/(1−ε)z < (1+ε)k/z. Moreover, with Y ′ =
∑

(a,c)∈Z X
′
(a,c)

we have E[Y ′] = k/(1− ε), and since the indicator random variables defined
above are pairwise independent, we also have Var[Y ′] ≤ E[Y ′] < (1 + ε)k.
Chebyshev’s inequality gives:

Pr
[
Y ′ < k

]
≤ Pr

[
|Y ′ −E[Y ′]| > k

1−ε − k
]

≤ Var[Y ′](
k − k

1+ε

)2 ≤
(1 + ε)k(
k

1−ε − k
)2 <

1
9

since k ≥ 9/ε2.
Not enough samples. Consider the case where |S| < k after all pairs

have been retrieved. In this case the algorithm returns β = k2 as an upper
bound on the number of distinct elements in the output, and we have two
possible situations: either there is actually less than k2 distinct pairs in the
output, in which case the algorithm is correct, or there are more than k2

distinct elements in the output, in which case it is incorrect. In the latter
case, less than k hash values have been smaller than p and the kth smallest
value v is therefore larger than p. Define X ′′(a,c) as

X ′′(a,c) =

{
1 h(a, c) < p

0 otherwise

and let again Y ′′ =
∑

(a,c)∈Z X
′′
(a,c). It results that E[X ′′(a,c)] = p and E[Y ′′] =

zp, and because of pairwise independancy of X ′′(a,c), also Var[Y ′′] ≤ E[Y ′′].

22 Chapter 3. Size estimation

Using Chebyshev’s inequality and remembering that z > k2 in this case we
have:

Pr[Y ′′ < k] ≤ Pr[|Y ′′ −E[Y ′′]| > zp− k]

≤ zp

(zp− k)2
≤ zp(

1
2zp
)2 ≤ 8/k ≤ 1/18.

using that k ≥ 9/ε2 ≥ 144.
In conclusion, the probability that the algorithm fails to output an esti-

mate within the given limits is at most 1/6 + 1/9 + 1/18 = 1/3. 2

For the proof of Theorem 3.9 we observe that in the above proof, if ε
is constant the error probability is O(1/k). Using k =

√
n we get linear

running time and error probability O(1/
√
n).

Realization of hash functions.

We have used the idealized assumption that hash values were real numbers
in (0; 1). Let m = n3. To get an actual implementation we approximate (by
rounding down) the real numbers used by rational numbers of the form i/m,
for integer i. This changes each hash value by at most 2/m. Now, because
of the way hash values are computed, the probability that we get a different
result when comparing two real-valued hash values and two rational ones is
bounded by 2/m. Similarly, the probability that we get a different result
when looking up a hash value in the dictionary is bounded by 2k/m. Thus,
the probability that the algorithm makes a different decision based on the
approximation, in any of its steps, is O(kn/m) = o(1). Also, for the final
output the error introduced by rounding is negligible.

3.3 Distinct sketches

A well-known approach to size estimation in, described in generality by
Gibbons [41] and explicitly for join-project operations in [8, 38], is to sample
random subsets R′1 ⊆ R1 and R′2 ⊆ R2, compute Z ′ = πac(R

′
1 1 R′2), and

use the size of Z ′ to derive an estimate for z. This is possible if R′1 =
σa∈Sa(R1), where Sa ⊆ πa(R1) is a random subset where each element is
picked independently with probability p1, and similarly R′2 = σc∈Sc(R2),
where Sc ⊆ πc(R2) includes each element independently with probability
p2. Then z′ = |Z ′|/(p1p2) is an unbiased estimator for z. The samples
can be obtained in small space using hash functions whose values determine
which elements are picked for Sa and Sc. The value |Z ′| can be approximated
in linear time using the method described in section 3.2 if the samples are
sorted — otherwise one has to add the cost of sorting. In either case, the
estimation algorithm is I/O-efficient.

3.3. Distinct sketches 23

Below we analyze the variance of the estimator z′, to identify the mini-
mum sampling probability that introduces only a small relative error with
good probability. The usual technique of repetition can be used to reduce
the error probability. Recall that we have two relations with n1 and n2 tu-
ples, respectively, and that na and nc denotes the number of distinct values
of attributes a and c, respectively. Our method will pick samples R′1 and R′2
of expected size s from each relation, where s = p1n1 = p2n2 is a parameter
to be specified.

Theorem 3.13 Let R′1 and R′2 be samples of size s, obtained as described
above. Then z′ = |πac(R′1 1 R′2)|/(p1p2) is a 1 ± ε approximation of z =
|πac(R1 1 R2)| with probability 5/6 if z > β, where β = 14

ε2

(
ncn1+nan2

s

)
. If

z ≤ β then z′ < (1 + ε)β with probability 5/6.

3.3.1 Analysis of variance

To arrive at a sufficient condition that z′ is a 1 ± ε approximation of z
with good probability, we analyze its variance. To this end define Zi· =
{j | (i, j) ∈ Z}, Z·j = {i | (i, j) ∈ Z}, and let

Xi =

{
1− p1, if i ∈ Sa
−p1, otherwise

Yj =

{
1− p2, if j ∈ Sc
−p2, otherwise

.

By definition of Sa, E[Xi] = Pr[i ∈ Sa](1−p1)−Pr[i 6∈ Sa]p1 = 0. Similarly,
E[Yi] = 0. We have that (i, j) ∈ Z ′ if and only if (i, j) ∈ Z and (i, j) ∈
Sa × Sc. This means that z′p1p2 =

∑
(i,j)∈Z(Xi + p1)(Yj + p2). By linearity

of expectation, E[(Xi + p1)(Yj + p2)] = p1p2, and we can write the variance
of z′p1p2, Var(z′p1p2) as

E

 ∑
(i,j)∈Z

((Xi + p1)(Yj + p2)− p1p2)

2 .
Expanding the product and using linearity of expectation, we get

Var(z′p1p2) =
∑

(i,j)∈Z

∑
(i,j′)∈Z

E
[
X2
i p

2
2

]
+
∑

(i,j)∈Z

∑
(i′,j)∈Z

E
[
Y 2
j p

2
1

]
+
∑

(i,j)∈Z

E
[
X2
i Y

2
j

]
=
∑
i∈A

∑
j,j′∈Zi·

p2
2 E
[
X2
i

]
+
∑
j∈C

∑
i,i′∈Z·j

p2
1 E
[
Y 2
i

]
+ zE

[
X2
i

]
E
[
Y 2
i

]
.

24 Chapter 3. Size estimation

Since E
[
X2
i

]
= p1(1 − p1)2 + (1 − p1)(−p1)2 = p1 − p2

1 < p1, and similarly

E
[
Y 2
j

]
< p2 we can upper bound Var(z′) as follows:

Var(z′) = (p1p2)−2 Var(z′p1p2)

< (p1p2)−2
(∑
i∈A

∑
j,j′∈Zi·

p1p
2
2 +

∑
j∈C

∑
i,i′∈Z·j

p2
1p2 + z p1p2

)
≤ (p1p2)−2

(
ncz p1p

2
2 + naz p

2
1p2 + z p1p2

)
=
(
nc/p1 + na/p2 + (p1p2)−1

)
z .

3.3.2 Sufficient sample size

We are ready to derive a bound on the probability that z′ deviates signifi-
cantly from z. Choose 0 < ε < 1. Since z = E[z′] Chebyshev’s inequality
says

Pr[|z′ − z] > εz] <
Var(z′)

(εz)2
≤
(
nc/p1 + na/p2 + (p1p2)−1

)
/(ε2z).

This can equivalently be expressed in terms of the sample size s, since p1 =
s/n1 and p2 = s/n2:

Pr[|z′ − z] > εz] < (ncn1 + nan2 + n1n2/s) /(sε
2z).

We seek a sufficient condition on s that the above probability is bounded
by some constant δ < 1

2 (e.g. δ = 1/6). In particular it must be the case

that n1n2/(s
2ε2z) < δ, which implies s >

√
n1, n2/(δz) ≥

√
n1, n2/(δnanc).

Hence, using the arithmetic-geometric inequality:

n1n2/s <
√
ncn1nan2δ ≤ (ncn1 + nan2)/(2

√
δ).

In other words, it suffices that

(ncn1 + nan2) (1 + (2
√
δ)−1)

sε2z
< δ

⇐⇒ s >

(
ncn1 + nan2

z

)(
1 + (2

√
δ)−1

ε2δ

)
.

One apparent problem is the chicken-egg situation: z is not known in
advance. If a lower bound on z is known, this can be used to compute a
sufficient sample size. Alternatively, if we allow a larger relative error when-
ever z ≤ β we may compute a sufficient value of s based on the assumption
z ≥ β. Whenever z < β we then get the guarantee that z′ < (1 + ε)β with
probability 1− δ. Theorem 3.13 follows by fixing s and solving for β.

3.4. Experiments 25

Optimality.

For constant ε and δ our upper bound matches the lower bound of Ganguly
et al. [39] whenever this does not exceed n1 + n2. It is trivial to achieve a
sketch of size O((n1 + n2) log(n1 + n2)) bits (simply store hash signatures
for the entire relations). We also note that the lower bound proof in [39]
uses certain restrictions of parameters (n1 = n2, na = nc, and z < na + nc),
so it may be possible to do better in some settings.

3.4 Experiments

We have run our algorithm on most of the datasets from the Frequent
Itemset Mining Implementations (FIMI) Repository3 together with some
datasets extracted from the Internet Movie Database (IMDB). Each dataset
represents a single relation, and motivated by the Apriori space estimation
example in the introduction, we perform the size estimation on self-joins of
these relations. Table 3.1 displays the size of each dataset together with the
number of distinct a- and c-values.

Instance z na (= nc) ε0.1 ε0.01
accidents 94 · 103 468 1.18 3.73
bms-pos 760 · 103 1,657 0.78 2.47
bms-webview-1 128 · 103 497 1.04 3.29
bms-webview-2 1.45 · 106 3,340 0.80 2.54
chess 5.24 · 103 75 2.00 6.33
connect 13.8 · 103 129 1.62 5.12
directoractor 734 · 106 50,645 0.14 0.44
kosarak 66.2 · 106 41,270 0.42 1.32
movieactor 111 · 106 51,226 0.36 1.14
mushroom 7.17 · 103 119 2.16 6.82
pumsb 1.07 · 106 2,113 0.74 2.35
pumsb star 967 · 103 2,088 0.78 2.46
retail 7.19 · 106 16,470 0.80 2.53

Table 3.1: Characteristics of the used datasets. The rightmost middle
column displays the size na = |πa(R1)| (which in this case is equals
nc = | ∪ πc(R2)|). The two rightmost columns display the theoretical
error as described in Theorem 3.13, for p1 = p2 = 0.1 and p1 = p2 = 0.01,
respectively. These theoretical error bounds, which hold with probability
5/6, are significantly larger than the actual observed errors in Figure 3.2.

Rather than selecting h1 and h2 from an arbitrary pairwise independent
family, we store functions that map the attribute values to fully random and
independent values of the form d/264, where d is a 64 bit random integer

3http://fimi.cs.helsinki.fi

26 Chapter 3. Size estimation

0.8 0.9 1 1.1 1.2
Ratio

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

accidents
bms-pos
bms-webview-1
bms-webview-2
chess
connect
directoractor
kosarak
movieactor
mushroom
pumsb
pusmb_star
retail

(a) k = 256

0.8 0.9 1 1.1 1.2
Ratio

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

accidents
bms-pos
bms-webview-1
bms-webview-2
chess
connect
directoractor
kosarak
movieactor
mushroom
pumsb
pumsb_star
retail

(b) k = 1024

Figure 3.1: The cumulative distribution functions for k = 256 and
k = 1024. It is seen that k = 1024 yields a more precise estimate than
k = 256 with 2/3 of the estimates being within 4% and 10% of the exact
size, respectively.

0.5 1 1.5 2 2.5 3
Ratio

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

accidents
bms-pos
bms-webview-1
bms-webview-2
chess
connect
directoractor
kosarak
movieactor
mushroom
pumsb
pumsb_star
retail

(a) k = 1024, p1 = p2 = 0.1

0 0.5 1 1.5 2 2.5 3
Ratio

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

accidents
bms-pos
bms-webview-1
bms-webview-2
directoractor
kosarak
movieactor
pumsb
pumsb_star
retail

(b) k = 1024, p1 = p2 = 0.01

Figure 3.2: Plots for sampling with probability 10% and 1%. If the
sampling probability is too small, no elements at all may reach the sketch
and in these cases we are not able to return an estimate. Instances with
no estimates have been left out of the graph.

3.5. Conclusion 27

formed by reading 64 random bits from the Marsaglia Random Number
CDROM4.

We have chosen an initial value of p = 1 for our tests in order to be
certain to always arrive at an estimate. In most cases we observed that
p quickly decreases to a value below 1/k anyway. But as the sampling
probability decreases, the probability that the sketch will never be filled
increases, implying that we will not get a linear time complexity with an
initial value of p = 1. In the cases where the sketch is not filled, we report
|F |/(p1p2) as the estimate, where |F | is the number of elements in the buffer.

Tests have been performed for k = 256 and k = 1024. In each test,
60 independent estimates were made and compared to the exact size of the
join-project. By sorting the ratios “estimate”/”exact size” we can draw the
cumulative distribution function for each instance that, for each ratio-value
on the x-axis, displays on the y-axis the probability that an estimate will
have this ratio or less. Figure 3.1 shows plots for k = 256 and k = 1024. In
Table 3.2 we compare the theoretical error ε with observed error for 2/3 of
the results. As seen, the observed error is smaller than the theoretical upper
bound.

In Figure 3.2 we perform sampling with 10% and 1% probability, as de-
scribed in Section 3.3. Again, the samples are chosen using truly random
bits. The variance of estimates increase as the probability decreases, but
increases more for smaller than for larger instances. If the sampling proba-
bility is too small, no elements at all may reach the sketch and in these cases
we are not able to return an estimate. As seen, the observed errors in the
figure are significantly smaller than the theoretical errors seen in Table 3.1.

k ε Observed ε

256 0.188 0.1
1024 0.094 0.04

Table 3.2: The theoretical error bound is ε =
√

9/k as stated The-
orem 3.12. The observed error in Figure 3.1, however, is significantly
less.

3.5 Conclusion

We have presented improved algorithms for estimating the size of Boolean
matrix products, for the first time allowing o(1) relative error to be achieved
in linear time. An interesting open problem is if this can be extended to
transitive closure in general graphs, and/or to products of more than two
matrices.

4http://www.stat.fsu.edu/pub/diehard/

28 Chapter 3. Size estimation

Acknowledgements. We would like to thank Jelani Nelson for useful
discussions, and in particular for introducing us to the idea of buffering to
achieve faster data stream algorithms. Also, we thank Sumit Ganguly for
clarifying the lower bound proof of [39] to us. Finally, we thank Konstantin
Kutzkov and Rolf Fagerberg for pointing out mistakes that have been cor-
rected in this version of the text.

Chapter 4

Sparse Boolean matrix
multiplication

Let O(nω) denote the time complexity of multiplying two n × n matrices.
The classical algorithm as tought in school books requires a total of n3

multiplications and n3− n2 additions and thus gives a complexity bound of
ω ≤ 3.

We can solve a system of linear equations, AX = B, by using the ma-
trix multiplication X = (A−1B) or by using Gaussian Elimination. In 1965
Klyuvev et al. [56] showed that Gaussian elimination is optimal for solving
systems of linear equations if only operations on rows and columns are al-
lowed. However, in 1968 Winograd [100] modified algorithms for matrix mul-
tiplication and for solving systems of linear equations, thereby reduced the
number of operations needed by a constant factor of two. In 1969 Strassen
[93] was the first to discover a nontrivial algorithm that reduces the asymp-
totic upperbound of O(n3) for matrix multiplication. He showed that a 2×2
matrix multiplication could be done using 7 instead of 8 multiplications, and
by a recursive construction, a divide and conquer algorithm, an n×n matrix
multiplication could be done using O(nlog 7) ≈ O(n2.807) operations. That
is, ω ≤ 2.807.

After Strassens’ breakthrough it took around a decade before the upper
bound was reduced again, this time by Pan [78] who reduced it to ω ≤ 2.795.
With Pan’s reduction a minor race on reducing the exponent began. See
Figure 4.1 on the next page for a rough timeline of this decrement and [79]
for a survey of the decreasing upper bound until 1981.

The current upper bound on ω is due to Coppersmith and Winograd
[27] which in 1987 presented an algorithm for square matrix multiplication
using O(n2.376) operations.

It is widely conjectured that the lower bound O(n2) is also an upper
bound on ω.

The above complexities are relevant for square matrices only. Copper-

29

30 Chapter 4. Sparse Boolean matrix multiplication

Year

ω

1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988

2.1

2.2

2.3

2.4

2.5

2.62.6

2.7

2.8

2.9

3.0

[93]

[78]

[14]

[88]
[80] [26]

[27]

Figure 4.1: A sketch of the history of the decreasing bound on ω for
square matrix multiplication.

smith [25] and Huang and Pan [51] extended the results to rectangular ma-
trices. This resulted in a complexity bound for multiplying an n× ` with an
`× n matrix of O(n1.843+o(1)`0.533 + n2+o(1)), assuming ω = 2.376.

In 2008 Coppersmith and Winograd [28] showed that given one algo-
rithm for multiplying matrices, there exists another, better, algorithm. As
a consequence, ω is a limit point and can therefore not be realized by any
single algorithm.

All algorithms above use only the side lengths of the matrices as parame-
ter. In 2005 Yuster and Zwick [105] presented an algorithm, that also consid-
ers the number N of non-zeros in the matrices. In database terms, where ma-
trices are often affinity matrices representing the input data, N corresponds
to the input size. Their algorithm had a complexity of O(N0.7n1.2+n2+o(1)),
implying that for N ≤ n1.14 their algorithm is almost optimal, using only
O(n2+o(1)) operations. The essence of their approach was to split the data
into two subsets, determined by a function of n and N , and to produce the
output by applying the fast dense matrix multiplication by Coppersmith and
Winograd [27] and the naive sparse matrix multiplication (see [44]) to the
respective sets. The latter algorithm basically omits considering elements
from the two matrices if both elements are zero.

The content of this chapter is based on our paper [8] that extends the idea
of Yuster and Zwick by also considering the output size Z, ie. the number
of non-zeros in the result matrix, as a parameter. We thereby obtain a
complexity upper bound of O(N0.862Z0.408 +N2/3Z2/3) in the RAM model,

and O
(
N
√
Z

BM1/8

)
in the I/O model. In Figure 4.3 on page 34 we compare our

bound in the RAM model with the bounds of Coppersmith and Winograd

4.1. Introduction 31

as well as Yuster and Zwick over the set of all possible input and output
sizes.

The latest result is due to Lingas [61] who presented a randomized algo-
rithm running in O(n2Z0.188) time.

4.1 Introduction

Efficient computation of matrix multiplication and joins of database rela-
tions are both problems that have been studied in decades. What might
not be obvious is that the two problems are related and below we shall see
how computation time of both can be improved in some cases by combining
techniques from the fields.

First, let us spend a moment motivating the need for improvements
in computation of database joins—or rather, database joins followed by a
duplicate eliminating projection: consider a set of movies and the set of
actors in these movies. This data set can be described in a table with two
columns, movie and actor, pairing related movies and actors. If we were
interested in the unique set of actor pairs playing together in at least one
movie we could join the table with itself on movie, project away the movie
column and eliminate duplicates. In a small experiment on a subset of
the Internet Movie Database (IMDB) we performed a join of 492,000 movie
appearances, involving 37,000 actors and 8,100 movies. The number of actor
pairs produced by the join-project was 70,000,000, while the size of the join
(without projection) was much larger, having over 676,000,000 tuples.

As a more generel formulation, consider two tables R1(a, b) and R2(b, c)
sharing the key b, and a join on b followed by a projection on a and c. In
relational algebra this can be written as πa,c(R1 1 R2). It is easy to see
that an algorithm for this case can be used to solve the case where the
relations may have more attributes, by considering several attributes as one
(if needed, hashing can be used to produce a unique signature for large
composite values). We will use N and Z to denote the input and output
size, respectively. That is, N = |R1|+ |R2| and Z = |πa,c(R1 1 R2)|. As an
example, assume R1 = R2 = {(x, y) ∈ N2 | 1 ≤ x ≤ n and 1 ≤ y ≤ n} so
that |R1| = |R2| = n2 for some n ∈ N. Current database systems produce
the final result by evaluating the operators in an evaluation tree. We will
refer to this approach as the classical algorithm (see [103]). In our case,
this implies two steps: First, the join R1 1 R2 is performed, producing an
intermediate result of a certain size. Next, the projection is carried out.
In the join R1 1 R2, each of the n2 tuples in R1 will match n tuples in
R2 resulting in n3 unique tuples in total for the join operation. However,
when performing the projection πa,c afterwards, the final result will only
have n2 unique tuples when duplicates are eliminated. In other words, the
intermediate result had a factor Θ(

√
N) tuples more than both the input

32 Chapter 4. Sparse Boolean matrix multiplication

and the final result which seems like a waste of costly I/O. Other cases are
less trivial.

Let M and B denote the memory and block size respectively where the
unit of measurement is a single relation entry. That is, we assume that the
memory can hold M entries of a relation and a block can hold B entries
[3]. Let furthermore Õ(f) be a shorthand for f1+o(1). Then the classical
algorithm requires Õ(N

√
Z/B) I/Os (see Section 4.2). If the join attribute is

not projected away the classical algorithm is good, running in Õ((N+Z)/B)
I/Os.

As explained in more detail later, one way to improve the worst-case
behavior in cases similar to the example above is to represent the input
tuples of R1 and R2 as adjacency matrices of size n × n and construct the
result by multiplying the matrices in Õ(n2.376) time [27].

This chapter presents a way to evaluate these kind of expressions more
efficiently, without the need for the large intermediate subresult, by us-
ing a hybrid of matrix multiplication and the classical algorithm. The hy-
brid technique implies a worst-case improvement in the computation time
of conventional sparse matrix multiplications where both input and out-
put is sparse. The improvement holds within the RAM model and the
I/O model [3]. More specifically, we obtain a worst-case time complexity

of Õ(N2/3Z2/3 + N0.862Z0.408) in the RAM model and Õ
(
N
√
Z

BM1/8

)
I/Os in

the I/O model where, as a side effect of the hybrid construction, our algo-
rithm is at least as good in worst-case as any known algorithm for matrix
multiplication for all possible combinations of N , n and Z.

We will refer to joins followed by a duplicate eliminating projection that
projects away one or more join attributes as a collapsing join-project. Po-
tentially, collapsing join-projects can be used as a single operator in query
optimizers.

4.1.1 Related work

In 1984 Willard [97] presented an algorithm for evaluation of relational calcu-
lus expressions and analyzed the worst-case complexity in the RAM model.
The shown time and space bounds had only the input size N as parameter.
In 1990 Willard [98] presented an improved analysis which also took the
output size Z into account. Willard did not consider projections and was
therefore able to achive near-linear complexity in his algorithms. However,
the results did not scale in the number of tables k used. Pagh and Pagh
[75] introduced k as a third parameter in their analysis of acyclic joins and
presented an algorithm that scales linearly with k. As seen, the analysis can
be more precise when using more parameters. This chapter considers k in
Section 4.2 but we focus on the case k = 2 in our algorithm in Section 4.3.
However, we introduce a fourth parameter, namely the number n of distinct

4.1. Introduction 33

attribute values in input.
We will refer to our generic algorithm as Algorithm 2. The generic al-

gorithm has a number of instantiations, depending on how its steps are
implemented (in the RAM or I/O model). Below, we compare the worst-
case performance analysis of Algorithm 2 in the RAM model with the
analysis of the classical sort-merge-join, the results by Coppersmith and
Winograd [27] and Yuster and Zwick [105]. We emphasize analysis because
the various analyses are not tight to the actual performance of the algo-
rithms. The shown comparison is therefore not accurate. In the following,
let n denote then number of distinct attribute values in the input, that is,
n = |πa(R1) ∪ πb(R1) ∪ πb(R2) ∪ πc(R2)|.

Algorithm 2 The analysis of this algorithm gives a complexity of

Õ(N2/3Z2/3 +N0.862Z0.408).

The classical algorithm Yannakakis [103] gave a worst-case complexity
of Õ(NZ) for general acyclic join-projects on an arbitrary number of
relations. For two relations, the worst-case complexity is Õ(N

√
Z) as

we show in Theorem 4.1. This anaysis is tight.

Coppersmith and Winograd We will refer to this result as CW. They
obtained a matrix exponent of 2.376 giving a complexity of Õ(n2.376).
This analysis is tight.

Yuster and Zwick We will refer to this result as YZ. Their complexity was
Õ(N0.7n1.2 +n2) for n×n matrices with at most N nonzero elements
but the analysis is not output sensitive. Notice that n ≤ N .

The space requirements for the above algorithms are generally determined
by the size of the intermediate results and the size of the matrices involved.

Table 4.1 compares the time and space requirements for the above algo-
rithms and in Figure 4.2 we show, for each (N,Z) ∈ [n1;n2] × [0;n2], the
fastest algorithm (excluding Algorithm 2) at that coordinate with respect
to their analysis. Figure 4.3 shows where the analysis of Algorithm 2 is
(strictly) best.

4.1.2 Outline

The rest of this chapter is organized as follows: above we gave an example
of suboptimal behavior of the classical algorithm and this behavior will be
analyzed more formally in Section 4.2. Section 4.3 describes our algorithm
in the RAM and I/O model.

34 Chapter 4. Sparse Boolean matrix multiplication

Algorithm Model Time Space

Classical alg. RAM Õ(N
√
Z) Õ((N + Z)/w)

Algorithm 2 RAM Õ(N2/3Z2/3 +N0.862Z0.408) Õ(T/w)

CW RAM Õ(n2.376) Õ(n2/w)

YZ RAM Õ(N0.7n1.2 + n2) Õ(T/w)

Classical alg. I/O Õ(N
√
Z/B) T

Algorithm 2 I/O Õ
(
N
√
Z

BM1/8

)
T

Table 4.1: A comparison of worst-case time and space requirements for
the algorithms mentioned in Section 4.1.1. The units for time and space
in the RAM model are steps and words of size w, respectively, and in
the I/O model, the units are number of I/Os and number of blocks of
size B, respectively. T is a short-hand notation for the time complexity
of the algorithm on the same line.

CW

YZ
Classical merge-join

0
logZ

logn 2 logn

logN

logn

2 logn

Figure 4.2: A comparison of the classical merge-join algorithm and the
algorithms by Coppersmith and Winograd (CW) and Yuster and Zwick
(YZ). The figure shows the previously fastest algorithm on a RAM model
for different values of parameters N (input size) and Z (output size).

Algorithm Model Time Space

Classical alg. RAM Õ(N
√

Z) Õ((N + Z)/w)

Algorithm 1 RAM Õ(N2/3Z2/3 + N0.862Z0.408) Õ(T/w)

CW RAM Õ(n2.376) Õ(n2/w)

YZ RAM Õ(N0.7n1.2 + n2) Õ(T/w)

Classical alg. I/O Õ(N
√

Z/B) T

Algorithm 1 I/O Õ
(

N
√

Z

BM1/8

)
T

Table 1: A comparison of worst-case time and space requirements for the algorithms mentioned in Section 1.1.
The units for time and space in the RAM model are steps and words of size w, respectively, and in the I/O
model, the units are number of I/Os and number of blocks of size B, respectively. T is a short-hand notation
for the time complexity of the algorithm on the same line.

CW

YZ

Algorithm 2

0
log Z

log n 2 log n

log N

log n

2 log n

Figure 2: A comparison similar to Figure 1 but with
the analysis of Algorithm 1 (the area under the grid)
included. The graph shows the strictly fastest algo-
rithm on a RAM model for different values of pa-
rameters N and Z. As seen, the analysis of Algo-
rithm 1 completely dominates the merge-join and
for some values of (N, Z) it also dominates the algo-
rithms by Coppersmith and Winograd, and Yuster
and Zwick.

In 1981 Yannakakis [8] showed that U(N, Z) ≤ NZ by an-
alyzing an algorithm that is identical to the classical algo-
rithm when all relations share an attribute. But U depends
on k as the following theorem shows. From now on we con-
sider the case where all relations share an attribute.

Theorem 2.1. Let k > 1 be an integer. For k relations
on the form Ri(ai, b) we have

U(N, Z) = Θ(NZ1− 1
k).

Proof. We first show the upper bound on U . For each
possible b-value x, define si(x) as the number of tuples in
Ri having b = x. That is, si(x) = |σb=x(Ri)|. The tuples
in ! Ri having b = x for some value x will all be unique
and thus have a representative in the final projected output.
Therefore

s1(x)s2(x) · · · sk(x) ≤ Z. (1)

For any i, define Si as the subset of b-values occurring in

more than Z
1
k tuples of Ri, that is Si = {x | si(x) > Z

1
k }.

Each x ∈ Si will match at most Z1− 1
k tuples in total in

the other tables due to (1), and as |Si| ≤ |Ri| we have that

x ∈ Si will induce at most |Ri|Z1− 1
k tuples in the final

projected output. A similar argument can be applied for all
i resulting in

U(N, Z) ≤
k∑

i=1

|Ri|Z1− 1
k = NZ1− 1

k .

For the lower bound of U let [q] be a general notation for the
set {x ∈ N | 1 ≤ x ≤ q} and define k relations Ri(ai, b) with

tuples [Z
1
k] × [N

k
/Z

1
k]. Note that |Ri| = N

k
and that every

tuple r ∈ R1 will match exactly Z
1
k tuples in each of the

k − 1 other relations producing a total of (Z
1
k)k−1 = Z1− 1

k

tuples in the join containing r. As |R1| = N
k

the total join

size is N
k

Z1− 1
k . "

3. COMPUTING THE JOIN-PROJECT
We will show how to compute the collapsing join-project
efficiently for k = 2. For R1(a, b) and R2(b, c) let Va, Vb

and Vc be sets of all distinct a, b and c values represented
in such a way that v ∈ Vi and u ∈ Vj where u = v are
treated as equal if i = j but distinct if i &= j. The join
R1 ! R2 can be represented as a sequentially tripartite graph
G = (Va, Vb, Vc, E) where E ⊆ (Va ×Vb)∪ (Vb ×Vc). Notice,
that in contrast to a conventional tripartite graph we have
that Va ×Vc ∩E = ∅. We consider undirected graphs, where
it is understood that an edge (u, v) is considered identical
to the edge (v, u).

Let (va, vb) ∈ Va × Vb be an edge in E if and only if (va, vb)
is a tuple in R1(a, b) and similarly (vb, vc) ∈ Vb ×Vc an edge
in E if and only if (vb, vc) is a tuple in R2(b, c). See Figure 3.
Notice that (a, c) is a tuple in πa,c(R1 ! R2) if and only if
there is a path of length 2 from a to c in G. The edges in
Va × Vb and Vb × Vc can be represented as two adjacency
matrices Mab and Mbc. We have the following easy lemma:

Lemma 3.1. A tuple (a, c) ∈ πac(R1 ! R2) if and only if
(MabMbc)a,c > 0.

Proof. As Mab and Mbc are adjacency matrices over a
graph their product will, by definition of matrix multiplica-
tion, contain a non-zero entry at row a column c exactly if
a and c are connected by a path of length 2. "

Figure 4.3: A comparison similar to Figure 4.2 but with the analysis
of Algorithm 2 (the area under the grid) included. The graph shows
the strictly fastest algorithm on a RAM model for different values of
parameters N and Z. As seen, the analysis of Algorithm 2 completely
dominates the merge-join and for some values of (N,Z) it also dominates
the algorithms by Coppersmith and Winograd, and Yuster and Zwick.

4.2. The classical algorithm 35

4.2 The classical algorithm

In this section we perform an analysis of the classical algorith. Let 1 Ri
denote a natural join of k relations R1, . . . , Rk and Z denote the output size
of the final projection π(1 Ri). Given a known input size N =

∑
|Ri| and

output size Z we search for an upper bound for

U(N,Z) = max
R1...Rk

Σ|Ri|=N
|π(1Ri)|=Z

| 1 Ri|.

In 1981 Yannakakis [103] showed that U(N,Z) ≤ NZ by analyzing an algo-
rithm that is identical to the classical algorithm when all relations share an
attribute. But U depends on k as the following theorem shows. From now
on we consider the case where all relations share an attribute.

Theorem 4.1 Let k > 1 be an integer. For k relations on the form Ri(ai, b)
we have

U(N,Z) = Θ(NZ1− 1
k).

Proof We first show the upper bound on U . For each possible b-value
x, define si(x) as the number of tuples in Ri having b = x. That is, si(x) =
|σb=x(Ri)|. The tuples in 1 Ri having b = x for some value x will all
be unique and thus have a representative in the final projected output.
Therefore

s1(x)s2(x) · · · sk(x) ≤ Z. (4.1)

For any i, define Si as the subset of b-values occurring in more than Z
1
k

tuples of Ri, that is Si = {x | si(x) > Z
1
k }. Each x ∈ Si will match at most

Z1− 1
k tuples in total in the other tables due to (4.1), and as |Si| ≤ |Ri| we

have that x ∈ Si will induce at most |Ri|Z1− 1
k tuples in the final projected

output. A similar argument can be applied for all i resulting in

U(N,Z) ≤
k∑
i=1

|Ri|Z1− 1
k = NZ1− 1

k .

For the lower bound of U let [q] be a general notation for the set {x ∈
N | 1 ≤ x ≤ q} and define k relations Ri(ai, b) with tuples [Z

1
k] × [Nk /Z

1
k].

Note that |Ri| = N
k and that every tuple r ∈ R1 will match exactly Z

1
k tuples

in each of the k − 1 other relations producing a total of (Z
1
k)k−1 = Z1− 1

k

tuples in the join containing r. As |R1| = N
k the total join size is N

k Z
1− 1

k .
2

36 Chapter 4. Sparse Boolean matrix multiplication

High degree nodes

Low degree nodes

Va Vb Vc

Figure 4.4: Two relations R1 and R2 represented as a graph.

4.3 Computing the join-project

We will show how to compute the collapsing join-project efficiently for k = 2.
For R1(a, b) and R2(b, c) let Va, Vb and Vc be sets of all distinct a, b and
c values represented in such a way that v ∈ Vi and u ∈ Vj where u = v
are treated as equal if i = j but distinct if i 6= j. The join R1 1 R2 can
be represented as a sequentially tripartite graph G = (Va, Vb, Vc, E) where
E ⊆ (Va×Vb)∪(Vb×Vc). Notice, that in contrast to a conventional tripartite
graph we have that Va × Vc ∩E = ∅. We consider undirected graphs, where
it is understood that an edge (u, v) is considered identical to the edge (v, u).

Let (va, vb) ∈ Va × Vb be an edge in E if and only if (va, vb) is a tuple in
R1(a, b) and similarly (vb, vc) ∈ Vb×Vc an edge in E if and only if (vb, vc) is a
tuple in R2(b, c). See Figure 4.4. Notice that (a, c) is a tuple in πa,c(R1 1 R2)
if and only if there is a path of length 2 from a to c in G. The edges in
Va × Vb and Vb × Vc can be represented as two adjacency matrices Mab and
M bc. We have the following easy lemma:

Lemma 4.2 A tuple (a, c) ∈ πac(R1 1 R2) if and only if (MabM bc)a,c > 0.

Proof As Mab and M bc are adjacency matrices over a graph their prod-
uct will, by definition of matrix multiplication, contain a non-zero entry at
row a column c exactly if a and c are connected by a path of length 2. 2

Rather than just using matrix multiplication we will compute the result
by decomposing the join and projection into several parts, defined by how
much redundancy they are candidate to produce in the classical algorithm.

Definition 4.3 (Degree) Let δ(v) : V → N denote the degree of the node
v ∈ V = Va ∪ Vb ∪ Vc defined as the size of ({v} × V) ∩ E.

Using the degree, we can give a simple upper bound on the number of
occurrences of every tuple (a, c) in the join R1 1 R2:

Lemma 4.4 Let B1(a) = {b ∈ Vb | (a, b) ∈ E} and B2(c) = {b ∈ Vb | (b, c) ∈
E}. Then the a tuple of the form (a, ·, c) will occur exactly r = |B1(a)∩B2(c)|
times in the join R1 1 R2 and r ≤ min(δ(a), δ(c)).

4.3. Computing the join-project 37

We will split the nodes in Va, Vb and Vc in low and high degree nodes using
two thresholds ∆ac,∆b ∈ N. According to Lemma 4.4 the values from Va and
Vc with a degree smaller than ∆ac are guaranteed to occur with multiplicity
at most ∆ac in the join. Tuples in R1 and R2 containing such a and c values
can therefore be joined by using a conventional merge join and removing
duplicates using either a dictionary or by sorting, depending on model of
computation. The output multiplicity cannot be deduced from the degree
of values in Vb but tuples having δ(b) < ∆b will occur at most N∆b times in
the join and handling these small-degree tuples by a merge-join will imply
a smaller input to the following more time-consuming step: The rest of the
tuples are represented as two adjacency matrices which are multiplied using
an efficient conventional matrix multiplication algorithm [105] in order to
find paths of length 2 between a and c nodes. The algorithm is summarized
in Algorithm 2.

Observation 4.5 Conventional matrix multiplication is a special case of
Algorithm 2 for ∆ac = ∆b = 0. The algorithm by Yuster and Zwick [105]
is a special case of Algorithm 2 for ∆ac = n + 1. The classical merge-join
algorithm is a special case of Algorithm 2 for ∆ac = ∆b = n+ 1.

In particular, there exist values ∆ac and ∆b so that Algorithm 2 is at least as
good as any other known algorithm for sparse Boolean matrix multiplication.

Also notice, that the algorithm will produce the correct output (but the
running times may differ) for any values of ∆ac and ∆b.

Algorithm 2 Computing πac(R1 1 R2) or equivalently: computing the
product of Mab and M bc.

1: R′1 ← {(a, b) ∈ R1 | δ(a) < ∆ac} . Low multiplicity output
2: R′2 ← {(b, c) ∈ R2 | δ(c) < ∆ac}
3: S ← πac(R

′
1 1 R2) using the classical algorithm

4: S ← S ∪ πac(R1 1 R′2) using the classical algorithm
5: R′′1 ← {(a, b) ∈ R1 | δ(b) < ∆b} . Low δ(b)
6: R′′2 ← {(b, c) ∈ R2 | δ(b) < ∆b}
7: S ← S ∪ πac(R

′′
1 1 R′′2) using the classical algorithm

8: M
′ ← adjacency matrix for {(a, b) ∈ R1 | δ(a) ≥ ∆ac and δ(b) ≥ ∆b}

9: M
′′ ← adjacency matrix for {(b, c) ∈ R2 | δ(c) ≥ ∆ac and δ(b) ≥ ∆b}

10: M←M
′
M
′′

using multiplication algorithm of choice
11: S ← S ∪ {(a, c) | Ma,c > 0}
12: Eliminate duplicates in S
13: Output S

38 Chapter 4. Sparse Boolean matrix multiplication

4.3.1 Complexity in the RAM model

In the following we assume that Z is known. This assumption will be justified
later.

Theorem 4.6 Let f(N,Z) denote the time complexity of Algorithm 2. Then
f(N,Z) is Õ(N2/3Z2/3 +N0.862Z0.408) for suitable choice of ∆ac and ∆b.

Proof Algorithm 2 produces the output in three steps that account for
the superlinear work with respect to the Õ notation:

1. Tuples generated in line 3 and 4: There are Z unique tuples in πac(R1 1

R2) and each tuple corresponds to at most ∆ac tuples in R1 1 R2 ac-
cording to Lemma 4.4 so this step produces at most O(Z∆ac) tuples
in total.

2. Tuples generated in line 7: Each b node can be reached from at most
∆b different a or c nodes. Therefore this step contributes with at most
O(N∆b) tuples.

3. Tuples generated in line 10 and 11: The size of the matrices will
be at most1 N

∆ac
× N

∆b
and N

∆b
× N

∆ac
so this step can be handled

in Õ(M(N
∆ac

, N∆b
, N

∆ac
)) time where M(x, y, z) denotes the minimum

number of arithmetic operations needed in order to multiply an x× y
with a y × z matrix. This can be implemented in Õ(M(x, y, z)) time
in the RAM model.

Huang and Pan [51] proved that

M(x, y, x) = x2−αβ+o(1)yβ + x2+o(1)

is an upper bound on M , where α and β are constants given by the ma-
trix multiplication algorithm. With bounds proved by Coppersmith and
Winograd [27] and Coppersmith [25] the currently best known algorithm
has α = 0.294 and β = 0.533.

The duplicate elimination in line 12 can be done in Õ(Z) time using
sorting or hashing.

1The matrix dimensions are also bounded by n but as seen in figure 4.3 we still obtain
a near-optimal result by simplifying the analysis.

4.3. Computing the join-project 39

We now have

f(N,Z) = Õ
(
M(N

∆ac
, N∆b

, N
∆ac

) +N∆b + Z∆ac

)
= Õ

(
(N

∆ac
)2−αβ+o(1)(N∆b

)β + (N
∆ac

)2+o(1)

+N∆b + Z∆ac

)
(4.2)

= Õ
(

(N
∆ac

)k(N∆b
)β + (N

∆ac
)2

+N∆b + Z∆ac

)
. (4.3)

where (4.3) is a simplified expression obtained by setting k = 2− αβ.
We are interested in values for ∆ac and ∆b so that f(N,Z) is minimized.

For simplicity, rewrite (4.3) to max{. . . } of the involved terms

f(N,Z) = Õ
(

max
{

(N
∆ac

)k(N∆b
)β, (N

∆ac
)2, N∆b, Z∆ac

})
.

It is now safe to assume that N∆b = Z∆ac and therefore we can simplify
the above equation by setting ∆b = Z∆ac/N :

f(N,Z) = Õ
(

max
{

(N
∆ac

)k(N2

Z∆ac
)β, (N

∆ac
)2, Z∆ac

})
Notice that the two first parameters decrease with ∆ac while the last one
increases. This means that minimum exists where either (N

∆ac
)k(N2

Z∆ac
)β =

Z∆ac or (N
∆ac

)2 = Z∆ac.
In order to deduce ∆ac, consider the first case:

(N
∆ac

)k(N2

Z∆ac
)β = Z∆ac ⇒

∆ac = N
k+2β

1+k+βZ
−2

1+k+β .

With this value of ∆ac we obtain the minimum

Õ(Z∆ac) = Õ
(
N

k+2β
1+k+βZ

1− 2
1+k+β

)
.

Similarly, for the second case where (N
∆ac

)2 dominates we have the min-
imum

Õ(Z∆ac) = Õ(N2/3Z2/3)

using ∆ac = N2/3/Z1/3.
Finally the sum

f(N,Z) = Õ
(
N

k+2β
1+k+βZ

1− 2
1+k+β +N2/3Z2/3

)
≈ Õ(N0.862Z0.408 +N2/3Z2/3). (4.4)

40 Chapter 4. Sparse Boolean matrix multiplication

must be an upper bound for the minimum, where the last line is obtained
by using the currently best values of α = 0.294 and β = 0.533 as described
above. 2

Observation 4.7 If the exponent in matrix multiplication is 2+o(1) as con-
jectured by many, the worst-case complexity of Algorithm 2 is Õ(N2/3Z2/3)
for suitable values of ∆ac and ∆b.

Notice, that the above observation implies that O(N4/3) is a lower bound
for the complexity, even if the output has size O(N).

As noted in the proof of Theorem 4.6 our analysis is simplified and our
choice of ∆ac and ∆b not optimal: we do not take into account that n × n
is an upper bound on matrix sizes and ∆ac,∆b ≤ n. The real optimum is
found by minimizing

Õ
(
M
(

min(N
∆ac

, n),min(N∆b
, n),min(N

∆ac
, n)
)

+N∆b + Z∆ac

)
= Õ

(
M
(

min(N
∆ac

, n),min(N2

Z∆ac
, n),min(N

∆ac
, n)
)

+ Z∆ac

)
for ∆ac ≤ n.

Observation 4.8 The optimal values of ∆ac and ∆b can be found efficiently
assuming Z is known.

4.3.2 Output sensitivity

When executing the algorithm, Z is not known in advance but it can be
found iteratively without altering the complexity of the algorithm. This is
done by iteratively guessing a value of Z ∈ [Z ′; 2Z ′[for Z ′ = 2i in iteration
i and noticing that the algorithm still works correctly when using an upper
bound of Z. In each iteration the algorithm is stopped when the execution
time exceeds the bound described in Theorem 4.6. As the execution time
decreases geometrically, the latest execution time will dominate.

The time bound above, however, is given in big-oh notation which makes
it impossible in practice to compare the actual evaluation time with the
theoretical bound. A practical comparison would require an analysis of
the involved constant. Another approach could be to estimate the value of
Z by sampling: let S denote a sample obtained by picking q nodes from
πa(R1), q nodes from πc(R2) and computing all paths of length 2 between
these nodes. This sample S would have an expected size (q/N)2Z and thus
Z = E[(N/q)2|S|], i.e. we have an unbiased estimator for Z.

4.3. Computing the join-project 41

4.3.3 Complexity in the I/O model

We can obtain results analogous to those in Section 4.3.1 for the I/O model
by using I/O efficient algorithms for the steps of Algorithm 2, including an
I/O efficient version of fast matrix multiplication. However, as we will see
below even a very simple matrix multiplication algorithm, a cache-aware
version of the cubic algorithm, yields worst-case complexity better than the
classical algorithm.

Matrix multiplications in the I/O model can be performed by grouping
the matrix elements in squares of size

√
M ×

√
M and performing a con-

ventional matrix multiplication using these squares as element units. With
a block size of B, such a matrix multiplication requires (N/

√
M)3M

B =

N3/(B
√
M) I/Os.

Theorem 4.9 The number of I/Os required by Algorithm 2 when using a

cache-aware cubic matrix multiplication algorithm is Õ
(
N
√
Z

BM1/8

)
.

Proof Consider the three steps mentioned in the proof of Theorem 4.6.
Step 1 requires Õ(Z∆ac/B) I/Os and step 2 requires Õ(N∆b/B) I/Os us-
ing sorting to compute the join and eliminate duplicates. We use the simple
cubic-time matrix multiplication algorithm described above for step 3 result-
ing in a requirement of N3/(∆2

ac∆b

√
MB) I/Os for that step. Summarized,

the number of I/Os required is

Õ
(
Z∆ac
B + N∆b

B + N3

∆2
ac∆b

√
MB

)
. (4.5)

Using similar arguments as in the proof of Theorem 4.6 we can assume that
the three terms are equal at optimum. Setting the two first terms equal
gives ∆b = Z∆ac/N which can be inserted into (4.5):

Õ
(

2Z∆ac
B + N4

∆3
acZ
√
MB

)
(4.6)

Similarly, equating the two remaining terms gives ∆ac = N/(
√
ZM1/8)

which can be inserted into (4.6) in order to achive the desired result

Õ
(
N
√
Z

BM1/8

)
I/Os.

2

Notice that even though we are using the naive cubic-time multiplication
algorithm, this result improves the complexity with a factor M1/8 compared
to the classical algorithm.

42 Chapter 4. Sparse Boolean matrix multiplication

4.4 Conclusion

We presented an output-sensitive algorithm for collapsing join-projects and
sparse Boolean matrix multiplication that is more efficient worst-case in
both the RAM and I/O model than currently known algorithms. As we only
deal with worst-case analysis in this chapter the algorithm is not meant to
replace current algorithms in database systems but might be implemented
and used by the query optimizer as an alternative operator if the used join-
project plan is slow. The presented algorithm can be modified to be used
for conventional matrix multiplication over an arbitrary ring as well.

Chapter 5

Using the GPU

In the last two decades there has been a rapid evolution of graphics hard-
ware that has made it relevant for non-graphical computation tasks, and a
relatively new research field for algorithms and data structures on graphics
hardware has therefore appeared.

The earliest example of a graphics processing unit (GPU) probably dates
back to the 1970s where the ANTIC and CTIA chips provided a hardware
assisted mix of graphics and text mode. The chips were simple and the use
of graphics in commodity computers was limited. In the 1980s, the IBM
Professional Graphics Controller was the first to provide hardware acceler-
ated 2D and 3D graphics for IBM PCs. However, the hardware was slow (8
MHz), costed around $4500 USD and was therefore too expensive to succeed
in the market. In the 1990s the graphics hardware started to evolve and be
affordable to the average PC user. S3 Graphics introduced the first single-
chip dedicated 2D accelerator named S386911 and many spin-off chips fol-
lowed shortly thereafter with multiple APIs to access the hardware. Among
those were Microsoft’s WinG graphics library and DirectDraw. In the 1990s
CPU-assisted 3D games became increasingly popular, which created a mar-
ket for cheap dedicated 3D hardware. The first low-cost 3D chips were S3
ViRGE, ATI Rage and Matrox Mystique. At that time, two generalized
cross-platform graphics APIs, OpenGL and Glide, competed to become the
standard, and OpenGL won this battle. In the latest decade, from year
2000 and onward, the capacity of graphics hardware has increased rapidly
with focus on being able to solve simple dedicated tasks very fast. Graphics
hardware today is therefore characterized by its high processing power, high
memory bandwidth and numerous computation cores. This is an ideal envi-
ronment for data intensive or highly parallelizable computation tasks, and
two popular APIs have been developed for utilizing the hardware for gen-
eralized non-graphics computation: OpenCL and CUDA. More information
on the history of GPUs can be found in [60, 96].

In this chapter we use modern graphics hardware via OpenCL to perform

43

44 Chapter 5. Using the GPU

frequent pair mining, which is equivalent to Boolean matrix multiplication
and join-projects. The chapter is an elaboration of the paper A New Data
Layout For Set Intersection on GPUs, written in collaboration with Rasmus
Pagh, and presented at the 25th IEEE International Parallel & Distributed
Processing Symposium (IPDPS 2011) in Anchorage (Alaska), USA.

5.1 Introduction

Graphics processing units (GPUs) are currently the technology that gives
the largest computing power per dollar (measured in floating-point opera-
tions per second) [36, 62, 70]. Developing algorithms for GPU computation
is challenging, since the architecture imposes many requirements on the way
algorithms work, if the potential is to be fully utilized. In particular, pro-
grams need to be structured in identical threads with as little conditional
code as possible (i.e., having regular control flow), such that all threads can
run the same instruction at the same time. Also, the memory access pat-
tern of threads that execute together needs to be highly regular to approach
the theoretical bandwidth of the GPU memory. For computation intensive
tasks the availability of hundreds of processing units has resulted in large
speedups compared to CPU computation (see e.g. the survey [74]). Even for
data intensive tasks such as sorting, advantage over CPU computation has
been demonstrated (see e.g. [43, 47, 58]).

Many computational problems depend on being able to perform set in-
tersection efficiently. For example:

• in Boolean matrix multiplication of two matrices, M and M ′, we want
to find all pairs (i, j) for which ∃k : Mi,kM

′
k,j > 0, or equivalently for

Ai = {j|Mi,j > 0} and Bj = {i|M ′i,j > 0}, the pairs (i, j) for which
Ai ∩Bj 6= ∅

• in a database context we might ask for a join-project of two tables,
i.e., a join of two tables followed by a duplicate eliminating projection
that projects away the join attribute. This is equivalent to sparse
Boolean matrix multiplication [8], and thus dependent on efficient set
intersection as well

• frequent itemset mining asks, given a set of transactions T1, . . . , Tm,
where Ti ⊆ {1, . . . , n}, to report all sets S ⊂ {1, . . . , n} having support
at least s in the transactions. The support of S is defined as the
number of transactions that have S as a subset. The special case where
itemsets are limited to size two (where only item pairs are found) is
also the core problem when larger itemsets are allowed, and frequent
itemset mining in general therefore reduces to efficient set intersection

5.1. Introduction 45

• all conjuctive queries can be thought of as set intersections: given a
dataset D, and two pre-processed subsets of data, f, g : D → {0, 1}|D|,
the conjuctive query {d ∈ D|f(d) ∧ g(d)} is exactly equivalent to an
intersection.

In this chapter we consider the general problem of intersecting sets. How-
ever, we use frequent itemset mining as a case study throughout the text,
as it is one of the most studied problems that can be solved by reduction
to multiple set intersections. We furthermore focus on itemsets of size two
(frequent pair mining), since this special case already has many applications
(such as finding binary associations) and is highly challenging when there
are many frequent items. At the end of the chapter we outline how our
approach could be generalized to deal with larger itemsets.

Set representations in frequent itemset mining There are two prin-
cipal ways of representing a set of transactions. In the standard horizontal
format the transactions are stored one by one (possibly sorted), whereas the
vertical format stores, for each item i, the set Si of indices of transactions
that contain i. This set is sometimes referred to as the tidlist of i. Observe
that finding the support of {i, j} is simply a matter of computing |Si ∩ Sj |.
If Si and Sj are stored in sorted order it is an easy task to do this in time
O(|Si|+ |Sj |). If the number of distinct items n is large we see that it is easy
to parallelize the computation of all support counts: simply distribute the
intersections among the processors such that each processor is responsible
for support counts involving a small number of items.

For some data sets (especially sparse ones) it may be faster to use a
horizontal layout and maintain a data structure that counts the occurrences
of all pairs. Then the time spent on a pair {i, j} is proportional to the
support of {i, j} rather than to the sum of support of {i} and {j}. However,
this approach may use excessive space when there are many pairs of frequent
items. In parallel and distributed settings the high space usage translates
into either using an expensive shared memory, or a phase where the support
counts from different parts of the transactions are combined. In either case,
the communication among processes becomes a bottleneck as the number of
frequent items grows.

5.1.1 This chapter

Theoretical contribution We present a new data format for sets, Bat-
Map, that is especially well-suited for parallel and pipelined computation. It
is instructive to compare our format to bitmaps, which have previously been
used to store the sets Si, using one bit per transaction [37]. To compute the
support of {i, j} one needs to perform the bit-wise AND of the bitmaps encod-
ing Si and Sj , and count the number of 1s. This task parallelizes very well,

46 Chapter 5. Using the GPU

as the bitmaps can be split into any desired number of pieces to be processed
individually, and there is a low communication overhead in combining the
counts. It is also very friendly to modern pipelined processor architectures,
since no conditional code is needed, avoiding the branch mispredictions that
have haunted previous frequent itemset mining algorithms using “vertical
data formats” and set intersections [83]. Finally, since data can be accessed
sequentially, bitmaps make optimal use of cache and prefetching.

The BatMap maintains these advantages, while being more space-effi-
cient on sparse sets. The space usage is in fact within a small factor of
the information theoretical minimum for representing sets of a given size,
which is the largest imaginable compression. That is, if Si and Sj are repre-
sented using batmaps Bi and Bj we can compute the size of Si ∩Sj using a
word-by-word comparison of Bi and Bj . In contrast to normal compressed
representations of sparse bitmaps, the steps of this computation are com-
pletely fixed, and parallelize immediately. The name BatMap indicates the
similarity to the functionality of a bitmap, and suggests that this is some-
thing that Bruce Wayne might use to mine associations between criminals
and crimes.

We should mention a limitation of batmaps compared to bitmaps: the
result of combining two batmaps is not a batmap, so it cannot directly
support the intersection of more than two sets. Towards the end of the
chapter we outline possible ways of dealing with this limitation.

Experiments In Section 5.4 we investigate the performance characteris-
tics of our algorithm (on GPU), and CPU implementations of Apriori [4]
and FP-growth [46] for varying density and number of distinct items. We
find that our algorithm scales well in the number of distinct items, in terms
of both computation time and memory usage. In addition, the algorithm
performs well for dense instances.

The throughput of batmap intersection on GPU is found to be about 5
times larger than when running the algorithm on our system with 8 CPU
cores. We also perform experiments comparing batmaps on GPU with merg-
ing of sorted lists, a standard CPU-based algorithm for computing intersec-
tion size.

5.1.2 Previous work

Set intersection

The algorithm for intersecting two sorted lists is folklore. In the literature it
has been extended in two main directions. The first is adaptive intersection
procedures, that use fewer comparisons when there are compact witnesses
for the intersection, see e.g. [30]. In the worst case, and in the average case,
these algorithms provide no speedup over the classical algorithm. Second, for

5.1. Introduction 47

dense sets there has been considerable work on compressed representations,
usually referred to as compressed bitmaps. The density of a set is its size
divided by the size of the universe from which its elements come (e.g., in
the case of frequent itemset mining, the density of Si is |Si|/m). Previous
work on high-performance compressed bitmap formats include Boncz [108],
BBC [53] and WAH [102]. These methods all require data to be decoded
sequentially, and provide no easy parallelization.

Bille et al. [13] present a compressed bitmap format that is nearly optimal
wrt. the amount of data read to compute set operations. However, this is
mainly a theoretical result that is not likely to perform well in a GPU setting.
Our new vertical data layout can be viewed as a kind of compressed bitmap,
with special properties.

Frequent itemset mining

To ease the exposition we will assume that we have preprocessed the data
set to remove items with support below the threshold we are interested in.
All existing frequent itemset methods do this, in one way or another, so the
interesting comparison is for the case where there are only frequent items.

GPU computation The previous work most closely related to ours is
that of Fang et al. [37]. They use (in the PBI-GPU algorithm) a bitmap
to store a vertical representation of the data set. This means that the
representation of a data set of m transactions with n distinct items requires
mn bits of space. For a sparse data set with a total of mb items, where
b� n, this can be much more than the log

(
mn
mb

)
≈ mb log(n/b) bits needed

to represent the data. Experiments in [37], on hardware similar to what we
use, show that their GPU/bitmap is more than 1 order of magnitude faster
than a tuned implementation of the Apriori algorithm in some cases where
the data set is dense (density 49%). For a sparse data set (density 0.6%)
there is basically no speedup. So both from a space usage and a computation
time perspective this method does not work well for sparse data sets. Based
on the experimental results on the synthetic dataset T40I10D100K reported
in [37] we can estimate the speed of the underlying set intersections to be
around 40 Gbit per second. In the case of T40I10D100K, which has a density
of 4%, this means that they can in 1 second intersect sets of total size around
1.6 · 109. Sets with lower density take proportionally longer per item, and
sets with larger density take proportionally less time.

We also note that [37] did not present experiments showing that a GPU
implementation can be faster than FP-growth [46] (in fact, in all three ex-
periments reported, FP-growth was considerably faster).

CPU computation A lot of work has been devoted to parallel and dis-
tributed implementations of frequent pattern mining. The survey of Zaki [107]

48 Chapter 5. Using the GPU

describes the state-of-the-art as of 1999. More recent work has focused
on multi-core architectures of modern commodity hardware, trying to op-
timize cache performance and minimize the overhead of access to shared
data [40, 59]. However, GPU parallelism involves many constraints on the
structure of the code and memory access pattern that is not addressed in
these works. In particular, our method exploits the massive SIMD paral-
lelism that is available on GPUs, and we find it conceivable that the set
representation we describe could lead to other advances in parallel and dis-
tributed computation.

5.2 BatMaps

Let Si denote the set of transactions containing item i. We wish to pre-
process the sets Si ⊆ {1, . . . ,m} such that we can quickly compute the
intersection sizes |Si ∩ Sj | for all item pairs {i, j}. A standard solution to
this problem is to store the sets as sorted lists, which allows an intersection
to be computed in time O(|Si| + |Sj |) by simple merging. However, the
control flow for this intersection procedure is unpredictable, which makes it
work poorly on modern architectures, in particular GPUs, since they require
highly structured control flow to perform well.

The initial idea is to rely on hashing rather than comparisons. If we orga-
nize the sets in hash tables (say, using linear probing or perfect hashing) it is
indeed fast to determine the common elements of two sets Si, Sj as we sim-
ply look up all elements from Si in Sj . Using perfect hashing (perhaps with
vectorization [15]) the control flow becomes deterministic and predictable.
However, the memory access pattern of hash table lookups remains random
and highly irregular.

Our new approach starts with an old idea from parallel and distributed
data structures [31, 91, 95], applied in a novel way. The idea is to store sets
redundantly to enable more efficient parallel/distributed operations. More
specifically, we consider the case where an element x can only be stored
in the memory locations given by 2d − 1 random hash functions (applied
to x). By storing an element in d out of the 2d − 1 possible locations, we
get that for, any two sets both containing x, there is at least one position
that contains x in both representations. This means that it suffices to do
a data independent element-by-element comparison which parallelizes very
well (see top part of Figure 5.1).

Our adaptation We will consider d = 2 and store each element x ∈ Si in
two of three hash tables. For the time being we will simply think of these
hash tables as a 3× r array A(i) (section 5.3 describes the specific layout we

use). In each hash table t ∈ {1, 2, 3} there is exactly one position (t, h
(i)
t (x))

where x can be stored, given by the hash function h
(i)
t . There is a probability

5.2. BatMaps 49

Figure 5.1: Computing the common elements in two batmaps is done
using pairwise comparisons. For the sake of the illustration we have
drawn each batmap as an array. For batmaps of the same size, we simply
need to compare elements at the same position (top). For batmaps of
different sizes, each entry in the smaller batmap needs to be compared
to several entries in the larger batmap (bottom).

xz y

z xy

y xz

Figure 5.2: Example of a 2-of-3 assignment for the set S = {x, y, z}.
Each element has one possible position in each of the three hash tables.
Two of these (where the element is underlined) are used to store the
element.

that the arrangement of values in the hash tables, as illustrated in Figure 5.2,
is not possible. We discuss this probability in Section 5.2.2, and for the sake
of the discussion we temporarily assume that the arrangement is always
possible.

It will be important that all sets are stored according to the same hash
functions h1, h2, h3, with range scaled according to the size of the set. That

is, given hash functions h1, h2, h3, we let h
(i)
t (x) = ht(x) mod ri, where ri =

O(|Si|) is a power of two to be specified later. Since we choose ranges that

are powers of 2, observe that for ri < rj we have h
(i)
t (x) = h

(j)
t (x) mod ri.

This means that if x ∈ Sj is stored in (1, p1) and (2, p2) it suffices to check
positions (1, p1 mod ri) and (2, p2 mod ri) to determine if x ∈ Si. Below,
we explain how this principle can be used to efficiently count the number of
items in Si ∩ Sj .

We will return to the issue of constructing the representation later. Sup-
pose that x ∈ Si ∩ Sj . Then, because we have stored x redundantly in the

hash tables there exists at least one t for which A
(i)
t [h

(i)
t (x)] = A

(j)
t [h

(j)
t (x)].

For now we assume that ri = rj = r, which means that h
(i)
t = h

(j)
t for all t.

Now, by making all equality checks of the form “A
(i)
t [p] == A

(j)
t [p]”, where

50 Chapter 5. Using the GPU

x0

x1

x0

x1

x1

x0

Figure 5.3: The three possible 2-of-3 assignments with respect to a
single element x. Along with each occurrence is the bit that tells whether
this occurence is before or after the other occurrence in the circular order
of rows. When counting the common elements in two data structures we
use this information to only count the last occurrence, in case the data
structures store an item x in the same two positions. This is accomplished
by a logical OR of the associated bits.

t ∈ {1, 2, 3} and p ∈ {0, . . . , r − 1}, we can identify each element in Si ∩ Sj .
These comparisons, illustrated in Figure 5.1, parallelize very well. However,
to count the number of elements in the intersection, an additional trick is
needed. We can impose a cyclic order to the three hash tables, such that h1

is followed by h2, h2 is followed by h3, and h3 is followed by h1. Then for
an occurrence of x in a hash table it makes sense to ask whether the other
occurrence of x is in the hash table is before or after (it will be in exactly one
of these). We use a single bit per position p in the hash tables to store this

information, denoted b
(i)
t [p]. Consider a pair of items {i, j}, and a position

(t, p) in their batmaps (assumed to be of the same size). In order to only
count exactly once a transaction x where both items appears, we use the

condition (A
(i)
t [p] = A

(j)
t [p]) ∧ (b

(i)
t [p] ∨ b(j)t [p]) to determine if the elements

in position p are overlapping and should be counted. See Figure 5.3 for an
illustration. It is easy to check that in both the case where an element x
is stored in the same two hash tables in both batmaps, and the case where
there is only one overlapping occurrence, x is counted exactly once. We will

see later that there will be positions p in each of A
(i)
t that contain no element

from Si — in these positions we simply set A
(i)
t [p] = ⊥ and b

(j)
t [p] = 0 to

ensure that no counting is done. Here ⊥ is a NULL value that is not in any
set Si.

For the general case, since ri divides rj , each position in A(i) corresponds
to rj/ri positions in A(j) as explained above. That is, we can again count
the number of elements in Si ∩ Sj by comparing each position in A(j) with

5.2. BatMaps 51

a position in A(i) (see Figure 5.1).

Compression Since our method is based on hashing we can use a com-
pression scheme that stores each item relative to the set of items with the
same hash value (see section 5.3.1 for details). This gives a significant space
saving for dense sets: in our implementation each hash table entry uses just

8 bits, including b
(i)
t [p], whenever the density of a set is above 2−8.

5.2.1 Data structure construction

We employ an insertion procedure that generalizes cuckoo hashing [77]
(which places elements in 1 of 2 possible positions). The idea is to push
elements around until an element is placed in a vacant position (with con-
tent ⊥). An insertion of x starts by putting x in A1, kicking out any element
that might reside in A1[h1(x)], making it nestless. In case there is a nestless
key, it is inserted in A2 in the same fashion, and so on using the circular
order 1, 2, 3, 1, 2, 3, If the number of element moves exceeds a threshold
MaxLoop the procedure returns the element that is currently nestless (our
analysis below shows that this is a small probability event). The pseudo
code is as follows (where ↔ is used to denote the swapping of two variable
values).

function insert(τ)
loop MaxLoop times
τ ↔ A1[h1(τ)]
if τ = ⊥ then return ⊥
τ ↔ A2[h2(τ)]
if τ = ⊥ then return ⊥
τ ↔ A3[h3(τ)]
if τ = ⊥ then return ⊥

end loop
return τ

end

Since we need two occurrences of each element x, the insert procedure is
called twice for each element. In case one of these insertions fails, we delete
any occurrences of x and re-insert the nestless element returned (unless it
happens to be identical to x). In the Analysis section below we bound the
probability of insertions to fail. While this probability is low for a single set,
failed insertions are likely to occur when handeling many sets. We describe
how we handle failed insertions in Section 5.3.3.

52 Chapter 5. Using the GPU

5.2.2 Analysis

Suppose we have a data structure for a set S, with hash functions of range
r. We now consider what might happen when we insert an element x1 using
the insert procedure. Possibly, a single copy of x1 has already been inserted
in the hash table. All other elements exist in exactly two copies. When
moving an element it may happen that it is moved to the location of the
other copy of that element. In this case the other copy is then moved to
the third location, which must contain a different element. We consider the
transcript of the insertion, which is the sequence of values of the variable τ
from the insert() function after each element move upon insertion of x1.

We first look at the possibility that each copy of an element appears only
once in this sequence, i.e., that each element appears at most twice. Then
each prefix of the transcript has the form xd1

1 , x
d2
2 , . . . , x

dk
k , where x1, . . . , xk

are distinct and d1, . . . , dk ∈ {1, 2} (number of copies that we move). Each
such sequence appears with probability r1−k, since we have a hash collision
between xi and xi+1 for i = 1, . . . , k − 1, and each such collision happens
independently with probability at most 1/r. Taking the union bound over
all choices for x2, . . . , xk and d1, . . . , dk we get an upper bound on the prob-
ability that a transcript prefix of length k occurs:

2knk−1r1−k = 2 (2n/r)k−1.

The next case to consider is when the transcript involves the same copy
of an item more than once (a loop). Then it is not hard to realize that the
insert procedure will move a prefix of the elements in the transcript back
to their original positions, and eventually have τ = x1 again. Then x1 is
pushed to a new table, and we again have two cases to consider.

1. The transcript does not again return to an element copy that appeared
previously. Consider a prefix of the transcript of length k′. Then at
least one of the two substrings of the transcript of length k = bk′/3c
that start with x1 will have no repeated element copies. We can bound
the probability of such a transcript in the same way as above:

2knk−1r1−k = 2(2n/r)k−1 ≤ 2(2n/r)k
′/3−2.

2. The transcript returns once again to a previously visited element copy
(a second loop). Let k denote the number of distinct elements en-
countered. The number of transcripts starting with x1 is then at most
2kk2nk−1, where the k2 factor is an upper bound on the number of
ways the two loops can be formed. There are k + 1 independent hash
collisions for such a transcript, so each has probability r−k−1, and by
a union bound we see that this is an unlikely event when r ≥ (2 + ε)n:

2kk2nk−1r−k−1 = (2n/r)kk2/(nr).

5.3. Implementation 53

Notice that the insertion may fail only in the last case. Using the assumption
that r ≥ (2 + ε)n we see that this happens for some k with probability at
most

n∑
k=1

(2n/r)kk2/(nr)

≤ (nr)−1
n∑
k=1

k2(1 + ε/2)−k

= O((ε3nr)−1).

Here, we have bounded the sum by computing the integral wrt. k from 0 to
∞.

When the insertion succeeds, we see that the probability that it goes
on for k′ steps or more is bounded by 2(2n/r)k

′/3−2. Thus, the expected
number of steps is bounded by

∞∑
k′=1

2(2n/r)k
′/3−2

≤
∞∑
k′=1

(1 + ε/2)−k
′/3+2

= O(1/ε).

Thus, by choosing ε > 0 as a constant, the expected time for performing all
insertions is O(n).

5.3 Implementation

The implementation is split into two parts: code for execution at the GPU,
and the pre- and postprocessing on the host system (CPU).

5.3.1 Layout of data structures

Our actual implementation differs a bit from the abstract description in
Section 5.2. We compress the data so that only 8 bits are used per batmap
element, while still being able to handle densities larger than 2−8. Define
three permutations, πt : {1, . . . ,m} → {1, . . . ,m} for t ∈ {1, 2, 3}, let as
earlier ri denote the domain size of the hash functions for batmap Bi, and

define the hash functions h
(i)
t by

h
(i)
t (x) = |B0|

⌊
πt(x) mod ri

r0

⌋
+ (πt(x) mod r0) + (t− 1)r0.

54 Chapter 5. Using the GPU

h1 h2 h3

h1 h2 h3 h1 h2 h3 h1 h2 h3 · · ·

Figure 5.4: Organization of the three hash functions for B0 (top) and
Bi (bottom) where |B0| = 3r0. Each ht above represents r0 batmap
elements covered by that hash function.

The batmap layout induced by these hash functions is illustrated in Fig-
ure 5.4. An important observation is now, that instead of storing element

x at position h
(i)
t (x) we could just as well store πt(x) at that position—the

result of the element-wise comparisons between two batmaps would be the

same. Next, by definition of h
(i)
t the position of πt(x) (the stored represen-

tation of x) in a batmap uniquely identifies the least significat bits in πt(x),
so explicitly storing these can be considered superfluous. Therefore, instead
of storing x we will only store the 7 most significant bits of πt(x). That is,
πt(x) can now be deduced from the position and the 7 bits stored in that
position. Furthermore, we use 1 additional bit per batmap element to store

the indicator bit b
(i)
t [p] described in Section 5.2, and organize the bits so the

indicator bit is the most significant of the 8 bits. This compression gives us
4 elements per 32-bit integer.

To get an idea of the efficiency of this compression scheme, assume that
we have to shift s bits to the right in order to move the 7 most significant bits
down to the least significant bits. Then log(m+1)−s ≤ 7, and consequently
2s ≥ (m + 1)/128. Also, as each element’s position in a batmap should

uniquely identify the least significant s bits of h
(i)
t all hash domains must be

at least of size ri ≥ 2s for this compression to work. If we compare to the
uncompressed case with hash domain sizes of 2 · 2dlog(|Si|)e ≈ 2|Si|, we only
obtain an actual compression (space reduction) when the input is sufficiently
dense, i.e. where the set size is satisfying 2|Si| ≥ 2s, or equivalently |Si| ≥
(m+ 1)/256.

In the GPU, the actual comparisons are done in chunks of 32-bit integers
(4 batmap elements at a time) in a way that completely avoids conditional
statements: let x and y denote two 32-bit integers, and for convenience, let
the 7 least significant bits in each 8-bit block be referred to as the element
bits as they refer to a batmap element. If ⊕ denotes a logical XOR and
“(· · ·)16” means hexadecimal notation then

p = ((x⊕ y) ∨ (80808080)16)− (01010101)16

gives a 0 (not 1) in the indicator bits iff the corresponding element bits of x
and y are equal. To negate these bits, and only count a match if one of the
corresponding indicator bits is set, define

p′ = (p⊕ (ffffffff)16) ∧ ((x ∨ y) ∧ (80808080)16).

5.3. Implementation 55

We then account for ((p′ � 7) + (p′ � 15) + (p′ � 23) + (p′ � 31)) ∧ 7
matches among the 2×4 elements represented by x and y. Here,� denotes
the shift operator as usual.

5.3.2 Our adaption of the GPU execution model

The execution model in GPUs and OpenCL can roughly be outlined as
follows: a kernel is a set of instructions to be evalutated on a set of cores in
a multiprocessor, and a thread running such a kernel is in OpenCL referred
to as a work item. These work items can be organized in a one, two or three
dimensional grid of size W1 ×W2 ×W3, also referred to as a work group,
and each running kernel instance can retrieve its coordinate (local index) in
this grid. Also, we define the global data size as a multiplum of the work
group size G1W1×G2W2×G3W3. When executing the kernel, work groups
are generated by iterating over the global size, i.e. a total of G1G2G3 work
groups are formed. As with the local index, each kernel instance can retrieve
its work groups’ current global coordinate (global index) in this iteration
process. As an example, consider a kernel that processes a two-dimensional
3200× 3200 pixels image in chunks of 16× 16 tiles. This would correspond
to a work group size of 16 × 16 threads, a global data size of 3200 × 3200,
and consequently 200 · 200 = 4000 work group positions in the global data.

OpenCL operates with multiple memory spaces, but here we will only
refer to two of these: the most plentiful memory space, global memory,
is the only memory space accessible from the host device (the CPU), and
it has the largest latency among all the memory spaces. The low-latency
shared memory resides closer to each compute unit, it is relatively small (e.g.
around 16 kb), and is shared among all the threads in a work group. One of
the most important considerations when implementing efficient algorithms
for execution at GPUs is coalescing global memory accesses, and we achieve
this by following best practice as described in [69]. In short, global memory
access by threads of a half warp (16 threads) are coalesced by the device in
as few as one transaction when certain access requirements are met, e.g. if
the 16 threads access a 64 bytes aligned segment, corresponding to 16 32-bit
integers.

We adapt the GPU execution model to the ideas described in Section 5.2
and 5.3.1 in the following way: a list containing all n batmaps is transferred
once to the device, and we then define the global size to be n × n, and
the work groups to be of size 16 × 16. Consequently, a total of n2 batmap
comparisons will be made, in chunks of size 16. The thread with local index
(li, lj) and global index (gi, gj) will now handle the comparisson of batmap
B16gi+li and B16gj+lj in turns of 16 integers (holding 64 batmap elements):
each of the 256 threads in the work group first copies two single items from
the input, which resides in global memory, into two small 16 × 16 integer
arrays in shared memory. Each row in these small arrays correspond to a

56 Chapter 5. Using the GPU

16 integer wide slice of batmap B16gi to B16gi+15, and B16gj to B16gj+15,
respectively. Because of coalescing, this copying is very efficient. Second,
after synchronising the threads with a memory barrier, the 16-item wide
batmap slices are now compared as described above, and the process is re-
peated with another copying from global to shared memory. This continues
until all slices of the relevant batmaps have been compared.

5.3.3 Pre- and post processing

As the batmap comparisons are performed in the GPU in quantums of 2
times 16 consecutive batmaps the computation time of each such 16-block
will be determined by the longest of these batmaps. Therefore, as a first
step, we sort the batmaps by increasing width (corresponding to sorting the
sets Si by size), resulting in a strongly reduced computation time for the
subresults for narrow batmaps. That is, after sorting we have |Bi| ≤ |Bj |
for i < j.

Many graphics devices have a few-second hard limit on the execution
time when the device is also used to support the display. Therefore, we
break the GPU calculation into smaller parts of size k × k where k, in our
experiments, typically had a value of 2048. Let Zp,q be a matrix holding the
subresults for batmaps Bpk to Bpk+k−1 and Bqk to Bqk+k−1. The division
into smaller sub problems now has the convenient side effect that we, due
to symmetry, only need to compute Zp,q for p ≤ q, thereby cutting almost
half of the GPU computation time, from n2 to around

(
n
2

)
.

Failed insertions As there is a positive probability that some of the
cuckoo insertions will fail due to collisions with previously inserted elements
we need to handle these failed insertions separately. Let Fb be the set of
items i for which insertion of value b in batmap Bi failed, and let Ab denote
all items in input associated with b. For all transactions b, we construct
the pairs (min(a, c),max(a, c)) for which a ∈ Fb and c ∈ Ab, and store each
pair in a set Mp,q where (p, q) = (bmin(a, c)/kc, bmax(a, c)/kc). Whenever
a subresult Zp,q is returned from GPU we extend it with the pairs found in
Mp,q before reporting the number of pairs found. (For p = q, only the upper
triangle of Zp,q is reported because of symmetry.)

5.4 Experiments

Hardware setup All experiments were run on a MacPro with two Intel
Xeon 5462, 2.8 GHz, 4-core CPUs and 6 GB RAM (bus speed 1.6 GHz),
running Mac OS X 10.6. The machine had a GeForce GTX 285 graphics card
with 1 GB RAM and 30 1.4 GHz cores having 8 computation units each. We
observe that the two Xeon chips (combined) and the GPU have a similar

5.4. Experiments 57

complexity, with a total of 1.6 and 1.4 billion transistors, respectively1.
However, the price of the 2 CPUs is significantly higher than that of the
GPU (the factor is around 5 based on Intel’s initial price for Xeon 5462,
but this ratio has likely decreased somewhat). A specified indicator of the
maximal energy consumption (TDP) is 2 × 80 W for the Xeon CPUs, and
204 W for the GPU, so the energy consumption at full utilization is likely
to be similar.

5.4.1 Frequent pair mining

In this section we report on experiments on frequent pair mining. Readers
who are primarily interested in the raw performance of set intersections may
skip ahead to the paragraph Throughput computation.

We have implemented frequent pair mining with batmaps in Python,
using the PyOpenCL interface to OpenCL. Even though it is would be pos-
sible to parallelize individual set intersection computations, we have chosen
to focus on the case where the number of items is large, such that it suffices
to run the different intersections in parallel. The output of our algorithm is
the support of every pair of items.

We will compare our algorithm with Apriori [4, 16, 17] and FP-growth
[18, 46]—both implemented by Christian Borgelt. Some experiments on
Eclat [106] were also performed but it was significantly slower than the
other three implementations and has therefore been left out of the graphs.
Even though other implementations have been reported to be faster in some
cases (e.g. [82, 94]), we found that the implementations available in the
FIMI repository did not compile with recent versions of gcc. Thus, we have
settled for Borgelt’s implementations, that are generally regarded as state-
of-the-art, as witnessed by a total of 35 citations in 2008-2010. Each test
run had a hard limit of 1800 CPU seconds before it was cancelled.

The first set of experiments illustrate the behavior of the three algo-
rithms when keeping the instance size constant and varying either the num-
ber of distinct items or the item density. An instance was generated by, for
each transaction, including each of the n distinct items with probability p,
and continue adding transactions until the desired total instance size was
reached.

Figure 5.5 depicts the memory usage for the three algorithms for varying
number of distinct items n. The space usage of the GPU implementation
comes from the preprocessing, which is done on the CPU. We did not at-
tempt to optimize the space usage of our preprocessing procedure, so it is
likely that significant savings could be obtained by a space-aware imple-
mentation. From the plot we se that while both FP-growth and the GPU
implementation scale well with n, Apriori has quadratic memory usage and

1Manufacturer’s specification.

58 Chapter 5. Using the GPU

0 10 20 30 40 50 60 70 80 90 100 110 120 130
#Distinct items in thousands

0

2

4

6

8

M
em

or
y

us
ag

e
in

 G
B

GPU
Apriori
FP-growth

Figure 5.5: Memory usage for varying number of distinct items n,
while holding the instance size at a constant 10 million items with an
item density of 5%. Apriori scales poorly with n.

0 10 20 30 40 50 60 70 80 90 100 110 120 130
#Distinct items in thousands

0

200

400

600

800

1000

1200

C
om

pu
ta

tio
n

tim
e

in
 s

ec
on

ds

GPU
Apriori
FP-growth

>1800>1800

Figure 5.6: Computation times on pure pair generation for varying
number of distinct items, while holding the instance size at a constant
10 million items with an item density of 5%. Both Apriori and FP-growth
exceeds their time limit on 1800 seconds when solving the n = 64, 000
instance. In comparison, the GPU implementation scales well in n.

exceeds the 6 GB RAM for less than 64,000 items.
Figure 5.6 compares the pure pair generation times for varying number

of distinct items, but keeping the data size fixed. This is the part of all
three methods that has super-linear complexity, so focusing on this allows
us to see the asymptotic behavior more clearly. Not surprisingly n = 64, 000
is an upper bound on what can be run with Apriori within the time limit,
due to memory trashing. As expected, FP-growth exhibits linear growth in
time usage as the number of items increases. The GPU algorithm has space
and time usage that grows linearly with the number of distinct items, but is
more than 1 order of magnitude faster than FP-growth (on a single core).

Figure 5.7 shows the total execution times including pre- and postpro-
cessing. Our implementation suffers from high preprocessing times, partly

5.4. Experiments 59

0 10 20 30 40 50 60 70 80 90 100 110 120 130
#Distinct items in thousands

0

200

400

600

800

1000

1200

C
om

pu
ta

tio
n

tim
e

in
 s

ec
on

ds

GPU
Apriori
FP-growth

>1800 >1800

Figure 5.7: Total computation times, including pre- and postprocessing
for varying number of distinct items, while holding the instance size at a
constant 10 million items with an item density of 5%. The preprocessing
time for the GPU implementation is high, but scales well in n.

0.001 0.01 0.1
Item probability (density)

10

100

1000

C
om

pu
ta

tio
n

tim
e

in
 s

ec
on

ds

GPU
Apriori
FP-growth

Figure 5.8: Computation times on pure pair generation for varying
item density, while holding the instance size and number of distinct items
constant at 10 million and 8000, respectively.

due to our choice of Python (which is interpreted) as language. Still, our im-
plementation outperforms Apriori and FP-growth for large n. According to
a popular benchmark [12], Python executes between 2 and 106 times slower
than GNU C++ with a median of 49. We therefore believe that an optimized
implementation of the preprocessing in C would achieve at least 1 order of
magnitude speedup compared to our simple Python implementation.

We tested the behavior of the algorithms for varying item densities, and
the results can be seen in Figure 5.8. While both Apriori and FP-growth
have difficulties handling dense instances, our GPU implementation uses
time almost independent of density. It can be noticed that for low densities
the GPU time actually increases. This is due to the lower bound on space
requirement for our compression scheme as described in Section 5.3.1.

In Figure 5.9 we try to illustrate how Apriori and FP-growth might scale

60 Chapter 5. Using the GPU

1 2 3 4 5 6 7 8
Number of computation units

1

2

3

4

5

6

7

8

R
el

at
iv

e
sp

ee
du

p

Theoretical
Apriori
FP-growth

Figure 5.9: The relative speed-up vs. the number of computation cores.
The theoretical speed-up is linear, but neither the implementation of
Apriori nor FP-growth were benefitting noticably from more than four
cores.

to a larger number of computation cores. Our experiments was based on
an instance of size 10 million items, 4000 distinct items, and a density of
5%. In a test simulating parallel execution on i cores, we split the original
instance into i smaller instances of identical size. We compare the maximum
execution times of test runs for i ∈ {1, 2, 4, 8}. As seen in the figure, none
of the algorithms benefit noticeably from more than four cores. This is
consistent with previous work which also finds that Apriori scales poorly on
many processors [104].

The last experiment, seen in Figure 5.10, compares the algorithm per-
formances on a “real-life” data set, WebDocs, which associates web docu-
ments and words. The data set was taken from the Frequent Itemset Mining
Dataset Repository2. As WebDocs is an enormous instance we run several
tests on prefixes of varying size. The number of distinct items in this in-
stance increases rapidly so all three algorithms are challenged. As seen,
Apriori exceeds the time limit first due to memory trashing. The GPU
algorithm solves the largest instance: a 25.600 line prefix.

Throughput computation The number of items processed by the GPU
for a pair mining run can be estimated as follows. Consider the experiment
with n = 4000 distinct items, a total instance size of 107, and p = 5%. Sets
in this instance have average size 107/4000 = 2500, which means that each
batmap is 3 · 2dlog(2·2500)e = 3 · 213 bytes wide. Thus the combined input
size to all set intersections is 40002 · 3 · 213 bytes. The experiment used
10.87 seconds on the GPU and thus we processed 36.2 Gbyte per second.
The memory bandwidth on the GPU, however, is around 159 Gbyte per
second so we are a factor of over 4 from the theoretical maximum memory

2http://fimi.cs.helsinki.fi/data/

5.4. Experiments 61

0 5000 10000 15000 20000 25000
Prefix size

0

200

400

600

800

1000

1200

1400

1600

C
om

pu
ta

tio
n

tim
e

in
 s

ec
on

ds

GPU
Apriori
FP-growth

>1800, trashing >1800

Figure 5.10: Computation time for pure pair generation for increasing
prefix sizes of the WebDocs instance. The number of distinct items
increases rapidly which explains why the computation time for Apriori
explodes for small prefixes. None of the algorithms could solve a prefix
of size 51,200 within the 1800 seconds time limit, and the memory usage
of helper data structures for the GPU implementation exceeded the 6
GB RAM available.

throughput.
To get an idea of the performance on GPU relative to the performance

of an equivalent implementation on CPU, we performed the following ex-
periment: two arrays of 5,000,000 32 bit integers were created, element-wise
comparison using the counting technique described in Section 5.3.1 was per-
formed 300 times, and the total execution time was measured. The size of
the arrays was chosen to measure the performance on non-cache-resident
data. The implementation was written in C, and compiled with gcc with
optimization level O3.

Figure 5.11 shows the average processing speed using 1, 2, 4, and 8 simul-
taneous CPU cores. Section 5.3.2 described how the GPU implementation
divides the complete problem in 16× 16 tiles, and for each such tile, copies
elements from global to shared memory. In the CPU implementation we
ignore the cost of these memory operations. Still, the processing speed of
the CPU never exceeds 7.6 Gbyte per second. This is almost a factor 5
slower than the 36.2 Gbyte per second obtained on the GPU.

5.4.2 Comparison with merging

A widely used representation of sets, that allows efficient computation of
intersections, is sorted lists. A simple for-loop can be used to report all
common elements, by scanning both lists. Even though this algorithm is
extremely simple, it runs slowly on modern CPUs due to branch mispredic-
tions.

To compare batmaps on GPU with CPU implementations based on

62 Chapter 5. Using the GPU

1 2 3 4 5 6 7 8
Number of CPU cores

0

1

2

3

4

5

6

7

G
by

te
 p

er
 s

ec
on

d

Throughput

Figure 5.11: Memory throughput of CPU comparison of batmaps (size
20 Mbyte). The CPU encounters a memory bottleneck when using 4
cores, and the throughput never exceeds 7.6 Gbyte per second which is
almost a factor 5 slower than the GPU.

merging, we first compute the number of set elements processed per sec-
ond in the experiment reported above. The total input size (in terms of
number of set elements) to all set intersections is 40002 · 2500 = 40 · 109.
Thus, we processed 3.68 · 109 elements per second, which is typical for in-
tersections of this size. Due to rounding of the size of hash tables, batmaps
of the same size would be able to accommodate up to 63% more elements,
which would give a maximal processing speed of 6 ·109 elements per second.
On the other hand, if the rounding works against us, the processing speed
would be only half of this.

We performed an experiment in which we counted the number of identical
elements in two sorted arrays of 224 integers (32 bits each), repeated 100
times. The implementation was written in C, and compiled with gcc with
optimization level O3. Doing one such run took 14.89 seconds (on one core),
which means that 2.25 · 108 elements are handled per second. This is 13–26
times slower than the processing speed on the GPU.

To compare against a parallel implementation, we did 8 simultaneous
runs (using 8 cores), which took 15.66 seconds. Since the time did not grow
noticeably, we conclude that the computation does not (yet) have a memory
bottleneck. The number of set elements processed per second using 8 cores
is 1.71 · 109, or 29–57% of the throughput of the GPU batmap computed
above. This means that performance is noticeably poorer on the CPUs than
on the far less expensive GPU.

5.5 Conclusion

We have shown that a GPU allows set intersection and frequent pair min-
ing that extends to much larger number of items than previous algorithms.

5.5. Conclusion 63

Further, we believe that our approach may be pushed further with careful
tuning, as we are still far from using the full memory bandwidth of the GPU.
Our techniques may open up for new applications of e.g. association mining
where there are tens of thousands of variables (e.g. genetic data).

One problem we leave open is to achieve similar results for intersections
of more than two sets. There are two ways in which our work could possibly
be extended: one is to use a generalization of batmaps that store items in
d out of d+ 1 places. This would ensure that itemsets of size up to d would
have at least one position witnessing their intersection. Another is to use
batmaps to count, for each item in Si1 , how many times this item appears
in Si2 , Si3 , At the end one would need to sum up the counts for the two
occurrences of each item to determine if the item appeared in all sets.

Acknowledgements. We would like to thank Anna Pagh for taking
part in showing theoretical results on our generalization of the cuckoo hash-
ing insertion procedure, and Kumar Lav for his participation in initial ex-
periments with the method described in this chapter. Also, thanks to the
anonymous reviewers for numerous useful suggestions. This work was sup-
ported by a grant from the Danish National Research Foundation, as part of
the project “Scalable Query Evaluation in Relational Database Systems”.

64 Chapter 5. Using the GPU

Chapter 6

Perspectives

In the previous chapters we considered the problem of joining exactly two
relations, R1, R2, or equivalently, computing products M1M2 of exactly two
matrices. In this chapter we put this into perspective by considering how
to handle products of more than two matrices and how to reduce matrix
multiplication to combinatorial graph problems.

6.1 Triangles

Section 4.3 on page 36 described how database relations Ri can be repre-
sented by sparse Boolean affinity matrices Mi. It also described how the join
of two relations R1 1 R2 and multiplication of two matrices M1M2 can be
modelled in sequentially tripartite graphs G = (V,E) with V = V1 ∪V2 ∪V3

and E = (V1× V2)∪ (V2× V3). Recall that, in this model, an output pair of
R1 1 R2 or a non-zero entry in M1M2 are equivalent to a path of length 2
from V1 to V3.

Assume that |V1| = |V2| = |V3| = n. We can naively reduce Boolean
matrix multiplication to triangle reporting by introducing n2 new edges
E′ = {(i, j) | i ∈ V1, j ∈ V3} and noticing that the subset of V1 × V3 that is
part of the output consists exactly of the vertices that are part of a triangle
in G′ = (V,E ∪ E′).

Triangle reporting, and reductions to and from matrix multiplication
have been studied intensively: By using matrix multiplication Alon et al. [6]
counted triangles in O(N2ω/(ω+1)) ≤ O(N1.41) time, for ω ≤ 2.376, thereby
reducing Boolean matrix multiplication to triangle reporting. This reduction
was done using a similar technique as the one described in Chapter 4 where
nodes are split according to a degree threshold and high-degree nodes are fed
as input to a Boolean matrix multiplication algorithm whereas low-degree
nodes are handled by an enumerating algorithm. Schank and Wagner [87]
gave a practical survey of multiple triangle finding algorithm implementa-
tions. Williams and Williams [99] presented a combinatorial reduction from

65

66 Chapter 6. Perspectives

fast triangle detection in general graphs to Boolean matrix multiplication
and furthermore reduced it to a number of related problems. The reduction
did not exploit sparsity of the graphs. Lately, in 2010, Kolountzakis et al.
[57] presented a new algorithm for counting the number of triangles in a
graph.

6.1.1 A probabilistic reduction

In the following we describe a non-trivial combinatorial probabilistic reduc-
tion by Pagh [76] from triangle reporting to Boolean matrix multiplication.
The reduction exploits sparsity of the graphs. Consider two n× n Boolean
matrices M1 and M2, and let as earlier N denote the total number of non-
zeroes in M1 and M2, and Z the number of non-zeroes in the product M1M2.
The reduction utilizes the following three problems:

• TriangleReporting(n,N,Z): Report the set of all the, at most
Z, triangles that can be found in an undirected graph with n vertices
and N edges.

• TriangleEdges(n,N): Report the set of edges that are part of a
triangle in a graph with n nodes and N edges.

• BooleanMatrixMultiplication(n,N,Z): Compute the Boolean
matrix product of two n×n matrices with a total of N non-zeros and
with at most Z non-zeros in the product.

It makes sense to describe the complexity of TriangleReporting as
the sum of a cost f(n,N) that is unrelated to the output and a cost f ′(n,N)
per triangle reported.

Lemma 6.1 If TriangleReporting(n,N,Z) can be solved in O(f(n,N)+
Zf ′(n,N)) time, where f and f ′ are increasing functions, then Triangle-
Edges(n,N) can be solved in

O((f(n,N) +Nf ′(n,N)) log n)

time with probability 1−O(n−1), and the output is always correct.

Proof We find all triangle edges by considering V1, V2 and V3 in turn
and, for each nodeset, generating the edges in log n iterations.

First, consider the turn with focus on V1. Randomly order the vertices in
V1 and consider the subgraph where only the first 2t nodes in V1 and their
incident edges are present. That is, when calling TriangleReporting,
only triangles involving the first 2t nodes from V1 are reported. For each
of these, we report the relevant triangle edges in V2 × V3, and whenever an
edge has been reported, we remove it from the graph in the next iterations.
All triangle edges in V2×V3 are reported no later than at the last iteration.

6.1. Triangles 67

A similar process is applied to report edges in V1 × V2 and V1 × V3, so with
O(log n) calls to TriangleReporting we immediately get the first term,
O(f(n,N) log n), in the lemma.

To account for the per-edge cost, consider again the first turn focusing
on V1, an arbitrary edge e ∈ V2 × V3 and the set B ⊆ V1 of nodes that are
part of a triangle containing e. If |B| < log n, then clearly at most O(log n)
triangles containing e will be reported throughout all log n iterations.

If |B| ≥ log n we argue, that with probability 1 − O(n−3), we will still
only see at most log n triangles containing e throughout the log n iterations.
After the first iteration t in which any node from B is seen in the 2t-sample,
no more triangles will be found in subsequent iterations, since e is removed.
We can bound the probability that 0 triangles are found within the first
t− 1 iterations and more than logn triangles are found exactly at iteration
t: Let Xv be |V1| Boolean random variables with Xv = 1 iff v ∈ V1 is
among the 2t sampled vertices, and let X =

∑
v∈BXv. Note that Xv are

negatively dependent, and that Chernoff bounds still holds for this case [33].
For 0 < c1 < c2 we use a Chernoff bound for sampling without replacement
and appropriate assignments of c1 and c2 to bound the following cases:

1. A node from B is found with high probability whenever the sample
size 2t is sufficiently large:

|B|
|V1|

2t > c1 log n⇒ Pr[X ≥ 1] ≥ 1− n−3

2. For sufficiently small samples sizes 2t, the probability that we sample
a lot of nodes from B is small:

|B|
|V1|

2t ≤ c2 log n⇒ Pr[X ≥ c2 log n] ≥ n−3

As each edge with probability 1 − O(n−3) is reported at most O(log n)
times throughout all log n iterations we obtain the last term of the lemma:
O(Nf ′(n,N) log n). The probability of 1 − O(n−1) is obtained by taking
the union bound of all N ≤ n2 edges. 2

Lemma 6.2 If TriangleEdges(n,N) can be solved in f ′′(n,N) time,
then BooleanMatrixMultiplication(n,N,Z) can be solved in

O(f ′′(n,N + 4Z) log n)

time.

Proof The main idea is to collapse the node sets V1 and V3 into increas-
ingly bigger sets of size 2t for t = 0, 1, . . . , log n. By collapsing a set of nodes,

68 Chapter 6. Perspectives

we, roughly speaking “replace” the nodes with a single representative, and
let all the involved edges be incident to that representative instead. This is
formalized below. In each iteration we compute sets of edges between the
collapsed nodes until we reach the result no later than at iteration t = log n.

Let It,u = {iu ∈ V1 | d2tp/ne = u, p ∈ [n]} and Jt,v = {jv ∈ V3 | d2tp/ne =
v, p ∈ [n]} so that It,u ⊆ V1 and Jt,v ⊆ V3 are decreasingly smaller sets as t
grows. In iteration t we compute the set

Rt = {(u, v) | there is a path from It,u to Jt,v}.

In each iteration t we create the graph of collapsed nodes induced by It,u
and Jy,v, i.e. with the vertex set Vt = {iu, kw, jv | u, v ∈ [2t], w ∈ [n]} and
edge set

Et = {(iu, kw) | E ∩ (It,u × V2) 6= ∅, u ∈ [2t], w ∈ [n]} ∪
{(kw, jv) | E ∩ (V2 × Jt,v) 6= ∅, w ∈ [n], v ∈ [2t]}.

Note that, if the edges (iu, kw) or (kw, jv) are in Et, then the edges (idu/2e, kw)
or (kw, jdv/2e) must be in Et−1, respectively, and consequently

Rt ⊆ {(u, v) | (du/2e, dv/2e) ∈ Rt−1}.

Rt−1 thus identifies a set Tt of at most 4Z edges that may complete a triangle
if added to Et. The graph Gt = (Vt, Et ∪Tt) has at most N + 4Z edges, and
running TriangleEdges on Gt would identify the edges of Rt. In no later
than iteration log n we have the result. 2

Corollary 6.3 If TriangleReporting(n,N,Z) can be solved in

O(f(n,N) + Zf ′(n,N))

time, then, with probability 1 − O(n−1), BooleanMatrixMultiplica-
tion(n,N,Z) can be solved in

O((f(n,N + 4Z) + (N + 4Z)f ′(n,N + 4Z)) log2 n)

time.

We have now seen reductions between triangle reporting and Boolean
matrix multiplication. Due to the above reduction, a faster output sen-
sitive algorithm for triangle reporting will imply a faster output sensitive
algorithm for Boolean matrix multiplication. However, the oppositely di-
rected reduction by Alon et al. [6] is not output sensitive, so a faster output
sensitive algorithm for Boolean matrix multiplication does not immediately
imply a faster output sensitive algorithm for triangle reporting.

We have now seen that join-projects, boolean matrix multiplication, and
triangle reporting are related problems. Matrix multiplication and tringle
reporting are both well studied problems, and as no known algorithms for
these problems scale well in k, Hypothesis 1 from Chapter 1 is unlikely to
hold.

6.2. Chain joins with projection 69

6.2 Chain joins with projection

We can consider join-projects of k ≥ 3 tables Ri = (ai, ai+1), and write them
in relational algebra as πa1,ak+1

(1i Ri). Equivalently, we can write them as
a product of multiple Boolean matrices M = M1M2 · · ·Mk. As for the case
with two operands, a join of k ≥ 3 tables can be represented by a layered
graph with k+1 node sets V1, V2, · · · , Vk+1, in which Vi for 2 ≤ i ≤ k holdes
the values of the join attribute of Ri−1 and Ri, and k edge sets E1, . . . , Ek
where Gi = (Vi ∪ Vi+1, Ei) models the affinity matrix for Ri. Similar to
the triangle case described above, it is not hard to see that by introducing
O(n2) new edges from V1 to Vk+1, the problem of reporting output tuples of
the join-project and the Boolean matrix product becomes equivalent to the
problem of finding cycles of length k+ 1 in G = (∪Vi, (∪Ej)∪ (V1 × Vk+1)).

Yuster and Zwick [105] presented a generalization of their fast sparse
matrix multiplication algorithm for the case with three or more matrices.
The algorithm enumerates all paths in the layered graph described above and
computes the tail product Mr · · ·Mk using recursive calls to the algorithm.
At the end of the recursion, their fast sparse multiplication algorithm is
used. They compare to dense multiplication using O(nω) time and the
naive algorithm (equivalent to a classical merge-join) using at most O(nN)
time. For k = 3 and ω ≥ 2.376 they obtain an improvement over both
compared alternatives when n1.24 ≤ N ≤ n1.45, and for k ≥ 4 they are never
the fastest.

If the final output is generated by an iterative process of multiplying two
consecutive matrices, it is, in the general case, non-trivial to find an optimal
pairwise association of the matrices. Consider the product of k matrices
M1, . . . ,Mk. If the matrices are dense, the optimal order of multiplication
is solely dependent of the matrix dimensions and can be found efficiently
using dynamic programming in O(k3) time [42, 89]. Here, it is assumed that
multiplying a p×q and a q×r (dense) matrix usesO(pqr) operations. Hu and
Shin [49, 50] used O(k log k) time to find an optimal order for dense matrices
and transform the problem into the problem of partitioning a convex polygon
into nonintersecting triangles. Chin [21] used O(k) time to calculate a near-
optimal order which is guaranteed to be within a factor 1.25 of the optimal
order.

For sparse matrices, the optimal order of multiplication may vary sig-
nificantly, even for matrices of the same dimensions, and finding an opti-
mal order therefore becomes increasingly complex. Cohen [24] presented
a method to predict the non-zero structure of a product of two or more
matrices, and this can be used to exploit the sparsity of intermediate prod-
ucts. She used a reachability-set size estimation algorithm [23] for arbitrary
directed graphs to estimate the number of ancestors or descendents from
a subset of designated nodes in the layered graph mentioned above. For
sub-products Mi . . .Mj , i < j, the reachability for the nodes in Vi−1 and

70 Chapter 6. Perspectives

Vj+1 is estimated (and referred to as the column sizes and row sizes), and
dynamic programming is then used to compute an optimal association with
respect to these estimated row and column sizes of the sub-products. If a
full reducer [81] is assumed applied to the join before estimation, Cohen’s
technique applies immediately to arbitrary acyclic joins with exactly two
projections, e.g. chain-joins of the form πap,aq(1i Ri) where Ri = (ai, ai+1)
and 1 ≤ p < q ≤ k+1. Note the two generalizations of this, compared to the
join-projects generally addressed in this text: firstly, the joins need not to be
chain-joins as long as the join graph is acyclic; and secondly, there is no as-
sumption of the projected columns to be located in the “end point”-relations
of the join graph, for example at relation R1 and Rk in the chain-join 1 Ri.

Also for arbitrary acyclic joins with exactly three projections in a chain
(for example the chain-join πap,aq ,ar(1i Ri) for 1 ≤ p < q < r ≤ k) the
technique may also apply with a two-phase approach: for every value of aq,
count and multiply the number of paths from aq to ap and from aq to ar,
and summarize these sub-results. Note that the projected attributes must
be descendants for this to work, i.e. there needs to be a simple path from aq
to ar. Therefore, join-graphs like a star-join, are generally not valid input.

For k = 3, our size estimation algorithm from Chapter 3 can be used
to find the optimal order by efficiently estimating the sizes of M1M2 and
M2M3, respectively: the pair chosen for the first multiplication uniquely
identifies the remaining matrix for the second multiplication.

However, for k ≥ 4, our estimation algorithm cannot be used directly.
Having identified the input matrices for the first multiplication (M1M2,
M2M3 or M3M4) does not immediately imply a preferable input for the
second multiplication, simply because two sparse operands in matrix mul-
tiplication may have a dense product (consider the product M1M2, where
the first column in M1 and the first row in M2 are 1, and all other entries
are zero). Thus, the intermediate estimates must contain more information
than just a number for the density. Using the size estimation described in
Chapter 3, the algorithm depicted in Algorithm 3 takes an iterative greedy
approach to multiplying k matrices using O(k) size estimations.

Algorithm 3 Computing the product M1M2 · · ·Mk using k−1 estimations
to initialize the algorithm, and at most 2 estimations for each of the k − 1
iterations. The estimation technique described in Chapter 3 can be used.

1: Perform a size estimation of each of the k − 1 consecutive matrix pairs
2: for i← 1, k − 1 do
3: Assume MjMj+1 is the estimated most sparse product
4: Perform the multiplication M ′ = MjMj+1

5: In the following iterations, consider M ′ instead of MjMj+1

6: Perform size estimations of Mj−1M
′ and M ′Mj+2

7: end for

Part II

Vertical partitioning

71

Chapter 7

Vertical partitioning

In conventional row store database systems, table rows are physically orga-
nized in pages. Rows are accessed through a buffer manager that keeps a
subset of the pages in RAM for faster access. Pages are typically also the
unit of disk access, meaning that each read or write of a single row implies
a read or write of the corresponding page.

Let us try to estimate the number of I/Os in a simplified situation with
a single query on a single table with N rows. If a page can hold p rows
and the buffer has room for B pages, then, for N > Bp, a table scan
will cost at least around N/p − B I/Os, and the I/O cost asymptotically
grows linearly with 1/p. The probability of any given page to exist in the
buffer can be estimated to Bp/N if all slots in the buffer hold pages for
our single table, so the probability of any given page not to exist in the
buffer is likely to be larger than 1−Bp/N . Therefore, if the query accesses
n random rows we can estimate the number of I/Os to be in the order of
n(1 − Bp/N)/p = n(1/p − B/N). Equivalently, the I/O costs of accessing
a table seems to be inverse proportional to the row width of the table and
proportional to the number n of accessed rows.

We should note the existence of Oracle’s Exadata [71, 72], which is a
combination of hardware and software that aims to speed up performance
of disc access. The system price is in the order of $1,000,000 USD [73].

The basic idea in vertical partitioning is to minimize the amount of
costly I/Os by partitioning tables vertically so that the number of irrelevant
columns for a given query, and thus the relative row width 1/p, is minimized.
Execution of a query on a vertically partitioned table may, however, be
more complex than executing the same query on an unpartitioned table:
updates for a column must be performed at all partitions holding a replica
of that column, and if referred columns are stored in multiple partitions
these partitions must be joined. Reconstructing a row by a join of two or
more tables may be more expensive than accessing the unpartitioned row,
depending on the total width of the partition rows (including meta data),

73

74 Chapter 7. Vertical partitioning

search time, and the current contents of the buffer. Section 7.2.4 on page 82
elaborates the complexity of solving the vertical partitioning optimization
problem.

The cost model described in this chapter has its origin in VoltDB, ear-
lier named H-store [92]: a re-thinking of row store database systems from
scratch, and built to scale well in the number of nodes in the database clus-
ter. To match this context, the model presented here allows partitions to
exist in different physical nodes. While the number of data fractions ob-
tained by horizontal partitioning can be almost arbitrarily high, the number
of fractions obtained by vertical partitioning is often very limited in compar-
ison. Thus, if the setting is a database cluster with many nodes, the vertical
partitioning should generally be applied on top of a horizontal partitioning
in order to ensure the existence of enough fractions to cover all nodes. In
VoltDB, rows are not organized in tables but stored individually in RAM
only. This eliminates the concern with expensive I/O, but the main idea of
reducing row widths is still valid in general due to spatial locality.

This chapter is an elaboration of the paper Vertical partitioning of rela-
tional OLTP databases using integer programming [7] that was presented at
the 5th International Workshop on Self Managing Database Systems (SMDB
2010), Long Beach, California, USA.

7.1 Introduction

In this chapter we consider OLTP databases with an H-store [92] like archi-
tecture in which we would aim for maximizing the number of single-sited
transactions (i.e. transactions that can be run to completion on a single site).
Given a database schema and a workload we would like to reduce the cost of
evaluating the workload. In row-stores, where each row is stored as a con-
tiguous segment and access is done in quantums of whole rows, a significant
amount of superfluous columns/attributes (we will use the term attribute in
the following) are likely to be accessed during evaluation of a workload. It
is easy to see that this superfluous data access may have a negative impact
on performance so in an optimal world the amount of data accessed by each
query should be minimized. One approach to this is to perform a vertical
partitioning of the tables in the schema. A vertical partitioning is a, pos-
sibly non-disjoint, distribution of attributes and transactions onto multiple
physical or logical sites. (Notice that vertical and horizontal partitioning are
not mutually exclusive and can perfectly be used together). The optimality
of a vertical partitioning depends on the context: OLAP applications with
lots of many-row aggregates will likely benefit from parallelizing the trans-
actions on multiple sites and exchanging small sub-results between the sites
after the aggregations. OLTP applications on the other hand, with many
short-lived transactions, no many-row aggregates and with few or no few-

7.1. Introduction 75

row aggregates would likely benefit from gathering all attributes read by a
query locally on the same site: inter-site transfers and the synchronization
mechanisms needed for non-single-sited or parallel queries (e.g. undo and
redo logs) are assumed to be bottlenecks in situations with short transaction
durations. Stonebraker et al. [92] and Kallman et al. [55] discuss the benefits
of single-sitedness in high-throughput OLTP databases in more details.

This chapter presents a cost model together with two algorithms that
find either optimal or close-to-optimal vertical partitionings with respect
to the cost model. The two algorithms are based on quadratic program-
ming and simulated annealing, respectively. For a given partitioning and
a workload, the cost model estimates the number of bytes read/written by
access methods in the storage layer and the amount of data transfer between
sites. Our model is made with a specific setting in mind, captured by five
headlines:

OLTP The database is a transaction processing system with many short
lived transactions.

Aggregates No many-row aggregates and few (or no) aggregates on small
row-subsets.

Preserve single-sitedness We should try to avoid breaking single-sitedness
as a large number of single-sited transactions will reduce the need for
inter-site transfers and completely eliminate the need for undo and
redo logs for these queries if the partitioning is performed on an H-
store like DMBS [92].

Workload known Transactions used in the workload together with some
run-time statistics are assumed to be known when applying the algo-
rithms.

Furthermore, following the consensus in the related work (see Section 7.1.3)
we simplify the model by not considering time spent on network latency (if
all vertical partitions are placed locally on a single site, then time spend on
network latency is trivially zero anyway). A description of how to include
latency in the model at the expense of increased complexity can be found
in Section 7.4 on page 83.

7.1.1 Outline of approach

The basic idea is as follows. We are given an input in form of a schema
together with a workload in which queries are grouped into transactions,
and each query is described by a set of statistical properties.

For each query q in the workload and for each table r accessed by q the
input provides the average number nr of rows from table r that is retrieved
from or written to storage by query q. Together with the (average) width

76 Chapter 7. Vertical partitioning

wa of each attribute a from table r this generally gives a good estimate for
how much attribute a costs in retrievals/writes by access methods for each
evaluation of query q, namely W ′a,q = wa · nr.

Given a set of sites, the challenge is now to find a non-disjoint distribution
of all attributes, and a disjoint distribution of transactions to these sites so
that the costs of retrievals, writes and inter-site transfers, each defined in
terms of W ′a,q as explained in details below, is minimized. This means, that
the primary executing site of any given query is assumed to be the site that
hosts the transaction holding that query.

As mentioned above, our algorithms will not break single-sitedness for
read queries and therefore no additional costs are added to the execution
of read queries by applying this algorithm. In contrast, since the storage
costs (the sum of retrieval, write and inter-site transfer costs) for a query is
minimized and each tuple become as narrow as possible, the total costs of
evaluating the queries (e.g. processing joins, handling intermediate subre-
sults, etc.) are assumed to be, if not minimized, then reduced too.

7.1.2 Contributions

This chapter contributes with the following:

• an algorithm optimized for H-store like architectures, preserving single-
sitedness for read queries and in which load balance among sites versus
minimization of total costs can be prioritized arbitrarily,

• a more scalable heuristic, and

• a micro benchmark of a) both algorithms based on TPC-C and a set of
random instances, b) a comparison between the benefits of local versus
remote partition location, and c) a comparison between disjoint and
non-disjoint partitioning.

7.1.3 Related work

A lot of work has been done on data allocation and vertical partitioning
but to the best of our knowledge, no work solves the exact same problem
as us: distributing both transactions and attributes to a set of sites, al-
lowing attribute replication, preserving single-sitedness for read queries and
prioritizing load balancing vs. total cost minimization. We therefore order
the references below by increasing estimated problem similarity and do not
mention work dedicated on vertical partitioning of OLAP databases.

In 1976 Eisner [34] reduced the cost of information retrieval by vertically
partitioning records into a primary and a secondary record segment. This
was done by constructing a bi-partite graph with two node sets: one set
with a node for each attribute and one set with a node for each transaction.

7.1. Introduction 77

By connecting attribute and transaction nodes with a weighted edge accord-
ing to their affinity, a min-cut algorithm could be applied to construct the
partitioning.

Sacca and Wiederhold [84] assumed a set of horizontal and vertical frag-
ments of a database was known in advance and produced a disjoint distri-
bution of these fragments onto a set of network-connected processors using
a greedy first-fit bin packing heuristic. Similarly, Menon [64] distributed a
set of predefined fragments to a set of sites, but used a linearized quadratic
program to compute the solution.

Sarathy et al. [86] took as input a geographically distributed database
together with statistics for a query pattern on this database and produced as
output a non-disjoint distribution of whole database tables to the physical
sites so that the total amount of transfer was minimized. They modelled
the problem as a linearized quadratic program which was solved in practice
using heuristics. The costs of joins were minimized by first transferring join
keys and then transferring the relevant attributes for the relevant rows to a
single collector site.

Navathe and Ra [68] constructed a disjoint partitioning with non-remote
partition placement. They used an attribute affinity matrix to represent
a complete weighted graph and generated partitions by finding a linearly
connected spanning tree and considering a cycle as a fragment.

Cornell and Yu [29] generated a non-remote, disjoint partitioning min-
imizing the amount of disk access by recursively applying a binary parti-
tioning. The partitioning decisions were based on an integer program and
with strong assumptions on a System-R like architecture when estimating
the amount of disk access.

Agrawal et al. [5] also constructed a disjoint partitioning with non-remote
partition placement. They used a two-phase strategy where the first phase
generated all relevant attribute groups using association rules [2] considering
only one query at a time, and the second phase merged the attribute groups
that were useful across queries.

Son and Kim [90] presented an algorithm for generating disjoint par-
titioning by either minimizing costs or by ensuring that exactly k vertical
fragments were produced. Inter-site transfer costs were not considered. The
partitioning was produced using a bottom-up strategy, iteratively merging
two selected partitions with the best “merge profit” until only one large
super-partition existed. The k-way partitioning was found at the iteration
having exactly k partitions and the lowest-cost partitioning was found at
the iteration with the lowest cost.

Chu and Ieong [22] minimized the amount of disk access by constructing
a non-remote and non-disjoint vertical partitioning. Two binary partition-
ing algorithms based on the branch-and-bound method were presented with
varying complexity and accuracy. The partitionings were formed by recur-
sively applying the binary partitioning algorithms on the set of “reasonable

78 Chapter 7. Vertical partitioning

cuts”.
Chakravarthy et al. [19] did not present an algorithm but gave an inter-

esting objective function for evaluating vertical partitionings. The function
was based on the square-error criterion as given in [52] for data clustering,
but did not cover placement of transactions which, in our case, has a large
influence on the expected costs.

Navathe et al. [67] considered the vertical partitioning problem for three
different environments: a) single site with one memory level, b) single site
with several memory levels, and c) multiple sites. The partitions could be
both disjoint and non-disjoint. A clustering algorithm grouped attributes
with high affinity by using an attribute affinity matrix together with a bond
energy algorithm [54]. Three basic algorithms for generating partitions were
presented which, depending on the desired environment, used different pri-
oritization of four access and transfer cost classes.

7.1.4 Outline of chapter

In section 7.2 we derive a cost model together with a quadratic program
defining the first algorithm. Section 7.3 describes a heuristic based on the
cost model found in Section 7.2, and Section 7.4 discusses a couple of ideas
for improvements. Computational results are shown in Section 7.5.

7.2 A linearized QP approach

In this section we develop our base model, a quadratic program (QP), which
will later be extended to handle load balancing and then linearized in order
to solve it using a conventional mixed integer program (MIP) solver.

7.2.1 The base model

In a vertical partitioning for a schema and a workload we would like to
minimize the sum

A+ pB (7.1)

where A is the amount of data accessed locally in the storage layer, B is
the amount of data needed to be transferred over the network during query
updates and p is a penalty factor.

We assume that each transaction has a primary executing site. For each
transaction t ∈ T , each table attribute a ∈ A, and each site s ∈ S consider
two decision variables xt,s ∈ {0, 1} and ya,s ∈ {0, 1} indicating if transaction
t is executed on site s and if attribute a is located on site s, respectively. All
transactions must be located at exactly one site (their primary executing
site), that is ∑

t∈T
xt,s = 1 ,∀s ∈ S (7.2)

7.2. A linearized QP approach 79

and all attributes must be located at at least one site, that is∑
a∈A

ya,s ≥ 1 , ∀s ∈ S.

To determine the size of A and B from equation (7.1) introduce five new
static binary constants describing the database schema:

• αa,q indicates if attribute a itself is accessed by query q

• βa,q indicates if attribute a is part of a table that q accesses

• γq,t indicates if query q is used in transaction t

• δq indicates if query q is a write query

• ϕa,t indicates if any query in transaction t reads attribute a

Single-sitedness should be maintained for reads. That is, if a read query in
transaction t accesses attribute a then a and t must be co-located:

xt,sϕa,t = 1⇒ ya,s = 1 ,∀t ∈ T , a ∈ A

or equivalently
ya,s − xt,sϕa,t ≥ 0 , ∀t ∈ T , a ∈ A.

In order to estimate the cost of reading, writing and transferring data,
introduce the following weights:

• wa denotes the average width of attribute a

• fq denotes the frequency of query q

• na,q denotes for query q the average number of rows retrieved from or
written to the table holding attribute a

Then the cost of reading or writing a in query q is estimated to Wa,q =
wa · fq · na,q and the cost of transferring attribute a over the network is
estimated to pWa,q. Notice, that Wa,q is only an estimate due to fq and
na,q.

Consider the amount of local data access, A, and let A = AR + AW
where AR and AW is the amount of read and write access, respectively. For
a given site r and query q, AR is the sum of all attribute weights Wa,q for
which 1) q is a read query, 2) attribute a is stored on r, 3) the transaction
that executes query q is executed on r and 4) q accesses any attribute in the
table fraction that holds a. As we maintain single-sitedness for reads, βa,q
can be used to handle 4), resulting in

AR =
∑
a,t,s,q

Wa,qβa,qγq,t(1− δq)xt,sya,s.

Accounting for local access of write queries, AW, is less trivial. Consider the
following three approaches:

80 Chapter 7. Vertical partitioning

Access relevant attributes An attribute a at site s should be accounted
for if and only if there exists an attribute a′ on s that q updates so that
a and a′ are attributes of the same table. While this accounting is the
most accurate of the three it is also the most expensive as it implies
an element of the form ya,sya′,s in the objective function which adds
an undesirable amount of |A|2|S| variables and 3|A|2|S| constraints to
the problem when linearized (see Section 7.2.3).

Access all attributes We can get around the increased complexity by as-
suming that write queries q always writes to all sites containing table
fractions of tables accessed by q, regardless of whether q actually ac-
cesses any of the attributes of the fractions. While this is correct for
insert statements (assuming that inserts always write complete rows) it
is likely an overestimation for updates: imagine a lot of single-attribute
updates on a wide table where the above method would have split the
attribute in question to a separate partition. This overestimation will
imply that the model will partition tables that are updated often or
replicate attributes less often than the accounting model described
above.

Access no attributes Another approach to simplify the cost function is
to completely avoid accounting for local access for writes and solely let
the network transfer define the write costs. With this underestimation
of write costs, attributes will then tend to be replicated more often
than in the first accounting model.

In this chapter we choose the second approach, which gives a conservative
overestimate of the write costs as we then obtain more accurate costs for
inserts and avoid extending the model with undesirably many variables and
constraints. Intuitively speaking, this choice implies that read queries will
tend to partition the tables for best possible read-performance, and the write
queries will tend to minimize the amount of attribute replication. We now
have

AW =
∑
q,a,s

Wa,qβa,qδqya,s

and thus

A =
∑
a,t,s,q

Wa,qβa,qγq,t(1− δq)xt,sya,s +
∑
q,a,s

Wa,qβa,qδqya,s. (7.3)

B accounts for the amount of network transfer and since we enforce
single-sitedness for all reads B is solely the sum of transfer costs for write
queries. We assume that write queries only transfer the attributes they
update and does not transfer to the site that holds their own transaction:

B =
∑
a,t,s,q

Wa,qαa,qγq,tδq(1− xt,s)ya,s.

7.2. A linearized QP approach 81

By noticing that
∑

a,t,s,q αa,qγq,tya,s =
∑

a,s,q αa,qya,s we can construct the
minimization problem as

min
∑

t,a,s c1(a, t)xt,sya,s +
∑

a,s c2(a)ya,s
s.t.

∑
s xt,s = 1 ∀t∑
s ya,s ≥ 1 ∀a

ya,s − xt,sϕa,t ≥ 0 ∀a, t
xt,s, ya,s ∈ {0, 1} ∀t, a, s

(7.4)

where
c1(a, t) =

∑
q

Wq,aγq,t(βa,q(1− δq)− pαa,qδq)

and
c2(a) =

∑
q

Wa,qδq(βa,q + pαa,q).

Both c1 and c2 are completely induced by the schema, query workload and
statistics and can therefore be considered static when the partitioning pro-
cess starts.

7.2.2 Adding load balancing

We are interested in extending the model in (7.4) to also handle load balanc-
ing of the sites instead of just minimizing the sum of all data access/transfer.
From equation (7.3) define the work of a single site s ∈ S as∑

a,t

c3(a, t)xt,sya,s +
∑
a

c4(a)ya,s (7.5)

where c3(a, t) =
∑

qWa,qγq,tβa,q(1 − δq) and c4(a) =
∑

qWa,qβa,qδq. Intro-
duce the variable m and for each site s let the value of (7.5) be a lower
bound for m. Adding m to the objective function is then equivalent to also
minimizing the work of the maximally loaded site.

In order to decide how to prioritize cost minimization versus load bal-
ancing in the model, introduce a scalar 0 ≤ λ ≤ 1 and weight the original
cost from (7.4) and m by λ and (1− λ), respectively. The new objective is
then

λ
∑
a,t,s

c1(a, t)xt,sya,s + λ
∑
a,s

c2(a)ya,s + (1− λ)m (7.6)

where m is constrained as follows:∑
a,t

c3(a, t)xt,sya,s +
∑
a,q

c4(a)ya,s ≤ m ,∀s ∈ S.

Notice that while we are now minimizing (7.6), the objective of (7.4)
should still be considered as the actual cost of a solution.

82 Chapter 7. Vertical partitioning

7.2.3 Linerarization

We use the technique discussed in [45, Chapter IV, Theorem 4] to linearize
the model. This is done by replacing the quadratic terms in the model with
a variable ut,a,s and adding the following new constraints:

ut,a,s ≤ xt,s ∀t, a, s
ut,a,s ≤ ya,s ∀t, a, s
ut,a,s ≥ xt,s + ya,s − 1 ∀t, a, s

For ut,a,s ≥ 0, notice that ut,a,s = 1 if and only if xt,s = ya,s = 1 and that
ut,a,s is guaranteed to be binary if both xt,s and ya,s are binary (thus, there
is no need for requiring it explicitly in the model).

Now, the model in (7.4) extended with load balancing looks as follows
when linearized:

min λ
∑

t,a,s c1(a, t)ut,a,s + λ
∑

a,s c2(a)ya,s + (1− λ)m

s.t.
∑

s xt,s = 1 ∀t∑
s ya,s ≥ 1 ∀a

ya,s − xt,sϕa,t ≥ 0 ∀a, t∑
a,t c3(a, t)ua,t,s +

∑
a,q c4(a)ya,s ≤ m ∀s
ut,a,s − xt,s ≤ 0 ∀t, a, s
ut,a,s − ya,s ≤ 0 ∀t, a, s

ut,a,s − xt,s − ya,s + 1 ≥ 0 ∀t, a, s
xt,s, ya,s ∈ {0, 1} ∀t, a, s

ut,a,s ≥ 0 ∀t, a, s

(7.7)

7.2.4 Complexity

The objective function in quadratic programs can be written on the form

1
2z

TQz + cz + d

where in our case z = (x1,1, . . . , x|T |,|S|, y1,1, . . . , x|A|,|S|) is a vector contain-
ing the decision variables, Q is a cost matrix, c is a cost vector and d a
constant. Q can be easily defined from (7.6) by dividing Q into four quad-
rants, letting the sub-matrices in the upper-left and lower-right quadrant
equal zero and letting the upper-right and lower-left submatrices be defined
by c1(a, t). Q is indefinite and the cost function (7.6) therefore not convex.
As shown by Marty and Judice [63] finding optimum when Q is indefinite is
NP-hard.

7.3 The SA solver – a heuristic approach

We develop a heuristic based on simulated annealing (see [101]) and will refer
to it as the SA-solver from now on. The base idea is to alternately fix x and y

7.4. Further improvements 83

and only optimize the not-fixed vector, thereby simplifying the problem. In
each iteration we search in the neighborhood of the found solution and accept
a worse solution as base for a further search with decreasing probability.

Let xt,s hold an assignment of transactions to sites and define the neigh-
borhood x′ of x as a change of location for a subset of the transactions
so that for each t ∈ T we still have

∑
s x
′
t,s = 1. Similarly, let ya,s hold

an assignment of attributes to sites but define the neighborhood y′ of y
as an extended replication of a subset of the attributes. That is, for each
a ∈ A in that subset we have ya,s = 1 ⇒ y′a,s = 1 and

∑
s y
′
a,s >

∑
s ya,s.

We found that altering the location for a constant number of 10% of both
transactions/attributes yielded the best results. The heuristic now looks as
pictured in Algorithm 4. Notice, that the linearization constraints is not

Algorithm 4 The heuristic based on simulated annealing (SA). It itera-
tively fixes x and y and accepts a worse solution from the neighborhood
with decreasing probability.

1: Initialize temperature τ > 0 and reduction factor ρ ∈]0; 1[
2: Set the number L of inner loops
3: Initialize x randomly so that (7.2) is satisfied
4: fix ← “x”
5: S ← findSolution(fix)
6: while not frozen do
7: for i ∈ {1, . . . , L} do
8: x← neighborhood of x
9: y ← neighborhood of y

10: S′ ← findSolution(fix)
11: ∆← cost(S′)− cost(S)
12: p← a randomly chosen number in [0; 1]
13: if ∆ ≤ 0 or p < e−∆/τ then
14: S ← S′

15: end if
16: fix ← the element in {“x”,“y”} \ {fix}
17: end for
18: τ ← ρ · τ
19: end while

needed since either x or y will be constant in each iteration. This reduces
the size of the problem considerably.

7.4 Further improvements

Resonable cuts Consider a table with n attributes together with two
queries: one accessing attribute 1 through k and one accessing attribute k

84 Chapter 7. Vertical partitioning

through n. Then it is sufficient to find an optimal distribution for the three
attribute groupings {1, . . . , k− 1}, {k} and {k+ 1, . . . , n}, considering each
group as an atomic unit and thereby reducing the problem size. In general,
it is only necessary to distribute groups of attributes induced by query access
overlaps. Chu and Ieong [22] refer to these attribute overlaps as reasonable
cuts. Even though this will not improve the worst-case complexity, this
reduction may still have a large performance impact on some instances.

Bottleneck transactions Also, assuming that transactions follow the
20/80 rule (20% of the transactions generate 80% of the load), the prob-
lem can be solved iteratively over T starting with a small set of the most
heavy transactions.

Network latency We can extend the algorithms to also estimate costs
of network latency for queries accessing attributes on remote sites. We
assume, that all remote access (if any) for queries are done in parallel and
with a constant number of requests per query per remote site. Let pl denote
a latency penalty factor and introduce a new binary variable ψq for each
query q indicating with ψq = 1 if q accesses any remotely placed attributes.
Letting n denote the number of remotely accessed attributes by q we have
n > 0 ⇒ ψq = 1 and n = 0 ⇒ ψq = 0, or equivalently (ψq − 1)n = 0 and
ψq − n ≤ 0. This results in the following two classes of new constraints:

(ψq − 1)
∑
a,s

δqαa,qγq,t(1− xt,s)ya,s = 0 ,∀q, t

and
ψq −

∑
a,s

δqαa,qγq,t(1− xt,s)ya,s ≤ 0 ,∀q, t

The total latency in a given partitioning can now be estimated by the sum
pl
∑

q fqψq which can be added to the cost objective function (7.4).

7.5 Computational results

We assume that the context is a database with a very high transaction count
like the memory-only database H-store [92] (now VoltDB1) and thus need to
compare RAM access versus network transfer time when deciding an appro-
priate network penalty factor p. A PCI Express 2.0 bus transfers between
32 Gbit/s and 128 Gbit/s while the bandwidth of PC3 DDR3-SDRAM is at
least 136 Gbit/s so the bus is the bottleneck in RAM accesses. We assume
that the network is well configured and latency is minimal. Therefore the

1http://voltdb.com

7.5. Computational results 85

network penalty factor could be estimated to p ∈ [3; 128] if either a giga-
bit or 10-gigabit network is used to connect the physical sites. We assume
the use of a 10-gigabit network and therefore set p = 8 in our tests unless
otherwise stated.

We furthermore mainly focus on minimizing the total costs of execution
and therefore set λ low. If λ is kept positive the model will, however, choose
the more load balanced layout if there is a cost draw between multiple
layouts. We set λ = 0.1 in our tests unless otherwise stated.

All tests were run on a MacBook Pro with a 2.4 GHz Intel Core 2 Duo
and 4GB 1067 MhZ DDR3 RAM, running Mac OS X 10.5. The GNU Linear
Programming Kit2 (GLPK) 4.39 was used as MIP solver, using only a single
thread.

The test implementation is available upon request.

7.5.1 Initial temperature

The temperature τ used in the heuristic described in Section 7.3 determines
how willing the algorithm is to accept a worse solution than the currently
best found. Let C∗ and C denote the objective for the best solution so
far and the currently generated solution, respectively. In the computational
results provided here we accept a worse solution with 50% probability in
the first set of iterations if C−C∗

C < 5%. Referring to the notation used in

Algorithm 4, we have 50% = e0.05C∗/τ and thus an initial temperature of
τ = −0.05C∗/ ln 0.5.

7.5.2 The TPC-C v5 instance

We perform tests on the TPC-C version 5.10.1 benchmark3. The TPC-C
specification describes transactions, queries and database schema but does
not provide the statistics needed to create a problem instance. We therefore
made some simplified assumptions: all queries are assumed to run with equal
frequency and all queries (not transactions) are assumed to access a single
row except in the obvious cases where aggregates are used or there are being
iterated over the result. In these cases we assume that the query accesses
10 rows. Thereby, the New-Order transaction for example, are assumed to
access 11 rows in average.

We model UPDATE queries as two sub-queries: A read-query accessing
all the attributes used in the original query and a write-query only accessing
the attributes actually being written (and thus whose update needs to be
distributed to all replicas).

2http://gnu.org/software/glpk
3http://www.tpc.org/tpcc

86 Chapter 7. Vertical partitioning

7.5.3 Random instances

To the best of our knowledge there is no standard library of typical OLTP
instances with schemas, workloads and statistics so in order to explore the
characteristics of the algorithms we perform some experiments on a set of
randomly generated instances instead as it showed up to be a consider-
able administrative and bureaucratic challenge (if possible at all) to collect
appropriate instances from “real life” databases. The randomly generated
instances vary in several parameters in order to clarify which character-
istics that influence the potential cost reduction by applying our vertical
partitioning algorithms. The parameters include: number of transactions in
workload, number of tables in schema, maximum number of attributes per
table, maximum number of queries per transaction, percentage of queries
being updates, maximum number of different tables being referred to from
a single query, maximum number of individual attributes being referred to
by a single query, the set of allowed attribute widths. We define classes
of problem instances by upper bounds on all parameters. Individual in-
stances are then generated by choosing the value of each parameter evenly
distributed between 1 and its upper bound. That is, if e.g. the maximum
allowed number of attributes in tables is k, the number of table attributes
for each table in the generated instance will be evenly distributed between
1 and k with a mean of k/2.

7.5.4 Results

In the following we perform a series of tests and display the results in tables
where each entry holds the found objective of (7.4) for the given instance.

Table 7.1 explores the influence of a set of parameters in the randomly
generated instances by varying one parameter at a time while fixing the rest.
We test two classes of instances using the SA solver: a smaller with #tables
= |T | = 20 and a larger with #tables = |T | = 100. The results suggest that
the largest workload reduction is obtained for instances having relatively
few queries per transaction, few updates, many attributes per table and/or
a moderate number of attribute references per query. The number of table
references per query and the allowed attribute widths, however, only seem
to have moderate influence on the result.

Table 7.3 compares the QP and SA solvers on the TPC-C benchmark
and a set of randomly generated larger instances, divided into two classes
with either large or low potential for cost reduction. The random instances
are described in Table 7.2 where the columns here refer to the single-letter
labels for the parameters shown in Table 7.1. As seen in Table 7.3 the
SA solver is generally faster than the QP solver but the QP solver obtains
lower costs when the instances are small. Expectedly, the instances in class
“rndB. . . ” with many attribute references per query but few queries per

7.5. Computational results 87

#tables = |T | = 20 #tables = |T | = 100
|S| = 1 |S| = 2 |S| = 3 |S| = 1 |S| = 2 |S| = 3

A Max queries
per transaction

1 0.585 0.309 0.278 3.194 1.784 1.471
3 1.567 1.478 1.386 5.743 4.550 4.189
5 1.305 1.054 0.972 8.840 7.569 6.983

B Percent
updates queries

0 1.747 1.369 1.110 5.959 4.235 3.510
10 1.567 1.478 1.386 5.743 4.550 4.189
30 1.349 1.244 1.263* 5.106 4.555 4.462

C Max
attributes per
table

5 0.520 0.520* 0.520* 2.583 2.772* 2.712*
15 1.567 1.478 1.386 5.743 4.550 4.189
35 1.643 0.968 0.850 14.970 7.341 5.355

D Max table
references per
query

2 0.602 0.430 0.356 3.447 3.022 2.865
5 1.567 1.478 1.386 5.743 4.550 4.189

10 2.246 1.607 1.516 8.147 6.063 5.623

E Max attribute
references per
query

5 0.678 0.288 0.199 5.176 2.526 1.969
15 1.567 1.478 1.386 5.743 4.550 4.189
25 1.115 0.988 1.008* 5.641 5.909* 5.684*

F Allowed
attribute widths

{2, 4, 8} 1.194 1.080 1.030 4.456 3.488 3.500*
{4,8} 1.567 1.478 1.386 5.743 4.550 4.189

{4, 8, 16} 2.387 2.160 2.060 8.912 6.977 7.000

Table 7.1: Comparing the effect of parameter changes. Results were
found using the SA solver. We test three possible values for each parame-
ter, varying one parameter at the time and fixing all other parameters at
their default value (marked with bold). The costs are shown in units of
106. Tests are divided into two classes having both the number of trans-
actions and schema tables equal to 20 (left) and 100 (right), respectively.
The results suggest that the largest workload reduction, unsurprisingly,
is obtained for instances having relatively few queries per transaction,
few updates, many attributes per table and/or a moderate number of
attribute references per query. The number of table references per query
and the allowed attribute widths, however, only seem to have moderate
influence on the result.

88 Chapter 7. Vertical partitioning

Name A B C D E F |T | #tables

rndAt4x15 3 10 30 3 8 {2, 4, 8, 16} 15 4
rndAt8x15 3 10 30 3 8 {2, 4, 8, 16} 15 8
rndAt8x15u50 3 50 30 3 8 {2, 4, 8, 16} 15 8
rndAt16x15 3 10 30 3 8 {2, 4, 8, 16} 15 16
rndAt32x15 3 10 30 3 8 {2, 4, 8, 16} 15 32

rndAt4x100 3 10 30 3 8 {2, 4, 8, 16} 100 4
rndAt8x100 3 10 30 3 8 {2, 4, 8, 16} 100 8
rndAt16x100 3 10 30 3 8 {2, 4, 8, 16} 100 16
rndAt32x100 3 10 30 3 8 {2, 4, 8, 16} 100 32

rndBt4x15 3 10 5 6 28 {2, 4, 8, 16} 15 4
rndBt8x15 3 10 5 6 28 {2, 4, 8, 16} 15 8
rndBt16x15 3 10 5 6 28 {2, 4, 8, 16} 15 16
rndBt16x15u50 3 50 5 6 28 {2, 4, 8, 16} 15 16
rndBt32x15 3 10 5 6 28 {2, 4, 8, 16} 15 32

rndBt4x100 3 10 5 6 28 {2, 4, 8, 16} 100 4
rndBt8x100 3 10 5 6 28 {2, 4, 8, 16} 100 8
rndBt16x100 3 10 5 6 28 {2, 4, 8, 16} 100 16
rndBt32x100 3 10 5 6 28 {2, 4, 8, 16} 100 32

Table 7.2: Random instances used when comparing the QP and SA
solvers in Table 7.3. The instances in the upper part (rndA. . .) are
expected to get a large cost reduction while instances in the lower part
(rndB. . .) are expected to get a small cost reduction. The columns refer
to the single-letter labels for the parameters shown in Table 7.1.

table gains little or no cost reduction by applying the algorithms. TPC-C,
on the other hand, gets a cost reduction of 37% and the random instances in
class “rndA. . . ”, with many attributes per table and relatively few attribute
references per query, get a cost reduction between 25% and 85%. None
of the algorithms found a cost reduction for the instances rndAt4x100 and
rndAt8x100 because of the “overweight” of transactions compared to the
number of attributes in the schemas.

Table 7.4 depicts an actual partitioning of TPC-C constructed by the
QP solver for three sites.

Table 7.5 illustrates the effect of disjoint versus nondisjoint partitioning,
that is, partitioning without and with attribute replication. As seen, greater
cost reduction can be obtained when allowing replication but in exchange
to increased computation time.

Table 7.6 compares two different kinds of partition placements: 1) all
partitions being located at one single site (thereby avoiding inter-site trans-
fers) and 2) partitions being located at remote sites. These two situations
can be simulated by setting p = 0 and p > 0, respectively. The benefits of
local placements are given by the amount of updates in the workload as only
updates cause inter-site transfers. More updates implies larger costs for re-
mote placements. For a somewhat extreme case, instance “rndAt8x15u50”,
with 50% of the queries being updates, the costs are about 33% lower when

7.5. Computational results 89

QP SA
Instance |A| |T | |S| Cost Time (s) Cost Time (s) |S| = 1

TPC-C v5 92 5 2 0.133 1 0.138 5 0.208
TPC-C v5 92 5 3 0.132 6 0.132 5 0.208
TPC-C v5 92 5 4 0.132 33 0.132 5 0.208

rndAt4x15 54 15 4 (0.332) 1800 0.396 10 0.933
rndAt8x15 105 15 4 (0.324) 1800 0.327 18 0.808
rndAt16x15 225 15 4 (0.267) 1800 0.309 41 1.180
rndAt32x15 492 15 4 (0.315) 1800 0.217 89 1.491
rndAt64x15 1023 15 4 (0.269) 1800 0.268 190 1.452

rndAt4x100 54 100 4 (8.001) 1800 8.246 79 7.946
rndAt8x100 105 100 4 (7.681) 1800 8.018 150 7.454
rndAt16x100 225 100 4 - t/o 6.525 321 8.741
rndAt32x100 492 100 4 - t/o 4.501 728 8.916
rndAt64x100 1023 100 4 - t/o 4.119 1531 9.591

rndBt4x15 12 15 4 0.303 65 0.303 3 0.303
rndBt8x15 27 15 4 (0.448) 1800 0.424 6 0.440
rndBt16x15 49 15 4 (0.333) 1800 0.334 9 0.385
rndBt32x15 98 15 4 (0.319) 1800 0.319 16 0.361
rndBt64x15 210 15 4 (0.221) 1800 0.221 31 0.229

rndBt4x100 54 100 4 (4.484) 1800 2.251 18 2.251
rndBt8x100 105 100 4 (4.323) 1800 2.419 37 2.419
rndBt16x100 225 100 4 (2.001) 1800 1.774 62 1.774
rndBt32x100 492 100 4 (2.419) 1800 1.999 124 1.999
rndBt64x100 1023 100 4 - 1800 2.473 270 2.473

Table 7.3: Comparing the QP algorithm with the simulated annealing
based heuristic (SA), allowing attribute replication and with remote par-
tition placement. Costs are shown in units of 106. The SA algorithm
had a 30 second time limit for each iteration and if the limit was reached
it proceeded with another neighborhood. The QP algorithm had a time
bound of 30 minutes and an MIP tolerance gap of 0.1%. Where the time
limit was reached, the best found cost (if any) is written in parentheses.
“t/o” indicates that no integer solution was found within the time limit.

90 Chapter 7. Vertical partitioning

Site 1

Transaction Payment

Customer.C BALANCE
Customer.C CITY
Customer.C CREDIT
Customer.C CREDIT LIM
Customer.C DATA
Customer.C DISCOUNT
Customer.C D ID
Customer.C FIRST
Customer.C ID
Customer.C LAST
Customer.C MIDDLE
Customer.C PHONE
Customer.C SINCE
Customer.C STATE
Customer.C STREET 1
Customer.C STREET 2
Customer.C W ID
Customer.C ZIP
District.D CITY
District.D ID
District.D NAME
District.D STATE
District.D STREET 1
District.D STREET 2
District.D W ID
District.D YTD
District.D ZIP
History.H AMOUNT
History.H C D ID
History.H C ID
History.H C W ID
History.H DATA
History.H DATE
History.H D ID
History.H W ID
OrderLine.OL DIST INFO
OrderLine.OL NUMBER
Stock.S ORDER CNT
Stock.S REMOTE CNT
Stock.S YTD
Warehouse.W CITY
Warehouse.W ID
Warehouse.W NAME
Warehouse.W STREET 1
Warehouse.W STREET 2
Warehouse.W YTD
Warehouse.W ZIP

Site 2

Transaction StockLevel

Customer.C CITY
Customer.C DELIVERY CNT
Customer.C PAYMENT CNT
Customer.C SINCE
Customer.C YTD PAYMENT
District.D ID
District.D NEXT O ID
District.D W ID
Item.I IM ID
OrderLine.OL D ID
OrderLine.OL I ID
OrderLine.OL O ID
OrderLine.OL W ID
Stock.S I ID
Stock.S QUANTITY
Stock.S W ID

Site 3

Transaction Delivery
Transaction NewOrder
Transaction OrderStatus

Customer.C BALANCE
Customer.C CREDIT
Customer.C DISCOUNT
Customer.C D ID
Customer.C FIRST
Customer.C ID
Customer.C LAST
Customer.C MIDDLE
Customer.C W ID
District.D ID
District.D NEXT O ID
District.D TAX
District.D W ID
Item.I DATA
Item.I ID
Item.I NAME
Item.I PRICE
NewOrder.NO D ID
NewOrder.NO O ID
NewOrder.NO W ID
Order.O ALL LOCAL
Order.O CARRIER ID
Order.O C ID
Order.O D ID
Order.O ENTRY D
Order.O ID
Order.O OL CNT
Order.O W ID
OrderLine.OL AMOUNT
OrderLine.OL DELIVERY D
OrderLine.OL D ID
OrderLine.OL I ID
OrderLine.OL O ID
OrderLine.OL QUANTITY
OrderLine.OL SUPPLY W ID
OrderLine.OL W ID
Stock.S DATA
Stock.S DIST 01
Stock.S DIST 02
Stock.S DIST 03
Stock.S DIST 04
Stock.S DIST 05
Stock.S DIST 06
Stock.S DIST 07
Stock.S DIST 08
Stock.S DIST 09
Stock.S DIST 10
Stock.S I ID
Stock.S QUANTITY
Stock.S W ID
Warehouse.W ID
Warehouse.W TAX

Table 7.4: The result of a vertical partitioning of the TPC-C bench-
mark using the QP solver for three sites. Each column represents the
contents of a site and is divided into three sub-sections: a header, a
section holding the transaction names and a longer section holding the
attributes assigned to the respective site.

7.6. Conclusion 91

placing the partitions locally.

7.6 Conclusion

We have constructed a cost model for vertical partitioning of relational
OLTP databases together with a quadratic integer program that distributes
both attributes and transactions to a set of sites while allowing attribute
replication, preserving single-sitedness for read queries and in which load
balancing vs. total cost minimization can be prioritized arbitrarily.

We also presented a more scalable heuristic which seems to deliver good
results. For both algorithms we obtained a cost reduction of 37% in our
model of TPC-C and promising results for the random instances. Even
though the latter theoretically can be constructed with arbitrary high/low
benefits from vertical partitioning, the test runs on our selected subset of
random instances seem to indicate that 1) our heuristic scales far better
than the QP-solver, and 2) it can obtain valuable cost reductions on many
real-world OLTP databases, as we tried to select the parameters realistically.

One thing we miss, however, is an official OLTP testbed – a library
containing realistic OLTP workloads, schemas and statistics. Such a col-
lection of realistic instances could serve as base for several insteresting and
important studies for understanding the nature and characteristics of OLTP
databases.

Acknowledgements. The author would like to acknowledge Daniel
Abadi for competent and valuable discussions and feedback. Also, Rasmus
Pagh, Philippe Bonnet and Laurent Flindt Muller have been very helpful
with insightful comments on preliminary versions of the text.

92 Chapter 7. Vertical partitioning

w. replication w/o replication
Instance |A| |T | |S| Cost Time (s) Cost Time (s) Ratio

TPC-C v5 92 5 1 0.208 0 0.208 0 -
TPC-C v5 92 5 2 0.133 1 0.207 1 64%
TPC-C v5 92 5 3 0.132 6 0.207 2 64%
TPC-C v5 92 5 4 0.132 33 0.207 3 64%

rndAt4x15 54 15 2 4.855 28 6.799 1 71%
rndAt8x15 105 15 2 4.710 517 5.809 6 81%
rndAt8x15 27 15 2 4.244 4 4.402 0 96%
rndAt16x15 49 15 2 3.410 34 3.852 0 89%

Table 7.5: Computational results from solving the TPC-C benchmark
and a few random instances with the QP solver. Costs are shown in
units of 105. The table shows that costs can be reduced by allowing
attribute replication and that TPC-C does not benefit noticeably from
being partitioned and distributed to more than two sites. The Ratio
column displays the ratio between the replicated and non-replicated cost.

Local Remote
Instance |A| |T | |S| Cost (QP) Cost (SA) Cost (QP) Cost (SA)

TPC-C v5 92 5 1 1.916 1.916 1.916 1.916
TPC-C v5 92 5 2 1.210 1.208 1.221 1.273
TPC-C v5 92 5 3 1.208 1.208 1.220 1.220

rndAt4x15 54 15 2 4.709 4.742 4.855 4.888
rndAt8x15 105 15 2 4.424 4.808 4.710 5.187
rndAt8x15u50 105 20 2 3.189 3.313 4.778 4.873
rndBt8x15 27 15 2 4.365 4.332 4.244 4.730
rndBt16x15 49 15 2 3.335 3.387 3.410 3.404
rndBt16x15u50 49 20 2 5.066 5.220 5.438 5.438

Table 7.6: Comparing the costs of local (p = 0) versus remote (p > 0)
location of partitions and with attribute replication allowed. Costs are
in units of 105. Write-rarely instances or instances in class “rndB. . . ” do
not benefit noticeably by placing all partitions locally, even the instances
with 50% update queries, however instances in class “rndA. . . ” with a
large update ratio do. The reason is that only updates cause inter-site
transfer. That the costs of the local placement for rndBt8x15 is larger
than when placed remotely is since λ > 0.

Bibliography

[1] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join
synopses for approximate query answering. In Proceedings of the 1999
ACM SIGMOD International Conference on Management of Data,
volume 28(2) of SIGMOD Record, pages 275–286. ACM, 1999.

[2] R. Agarwal, C. Aggarwal, and V. Prasad. A tree projection algorithm
for generation of frequent item sets. Journal of Parallel and Distributed
Computing, Jan 2001.

[3] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting
and related problems. Comm. ACM, 31(9):1116–1127, 1988. ISSN
0001-0782.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. In Proceedings of 20th International Conference on Very Large
Data Bases (VLDB ’94), pages 487–499. Morgan Kaufmann Publish-
ers, 1994.

[5] S. Agrawal, V. Narasayya, and B. Yang. Integrating vertical and
horizontal partitioning into automated physical database design. Pro-
ceedings of the 2004 ACM SIGMOD international . . . , Jan 2004.

[6] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length
cycles. Algorithmica, 17(3):209–223, 1997.

[7] R. R. Amossen. Vertical partitioning of relational oltp databases using
integer programming. In Proceedings of the ICDE Workshops 2010,
pages 93–98, mar. 2010.

[8] R. R. Amossen and R. Pagh. Faster join-projects and sparse matrix
multiplications. In Proceedings of the 12th International Conference
on Database Theory (ICDT ’09), pages 121–126. ACM, 2009. ISBN
978-1-60558-423-2.

[9] R. R. Amossen and R. Pagh. A new data layout for set intersection
on gpus. In Proceedings of the 25th IEEE International Parallel &
Distributed Processing Symposium (IPDPS ’11), 2011.

93

94 Bibliography

[10] R. R. Amossen, A. Campagna, and R. Pagh. Better size es-
timation for sparse matrix products. In M. Serna, R. Shaltiel,
K. Jansen, and J. Rolim, editors, Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Tech-
niques, volume 6302 of Lecture Notes in Computer Science,
pages 406–419. Springer Berlin / Heidelberg, 2010. URL
http://dx.doi.org/10.1007/978-3-642-15369-3 31.

[11] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Tre-
visan. Counting distinct elements in a data stream. In Proceedings of
the 6th International Workshop on Randomization and Approximation
Techniques (RANDOM ’02), pages 1–10. Springer-Verlag, 2002. ISBN
3-540-44147-6.

[12] Benchmarks. Computer language benchmark game.
http://shootout.alioth.debian.org/u32/benchmark.php?
test=all&lang=all.

[13] P. Bille, A. Pagh, and R. Pagh. Fast evaluation of union-intersection
expressions. In T. Tokuyama, editor, Algorithms and Computation,
18th International Symposium, ISAAC 2007, Sendai, Japan, Decem-
ber 17-19, 2007, Proceedings, volume 4835 of Lecture Notes in Com-
puter Science, pages 739–750. Springer, 2007. ISBN 978-3-540-77118-0.

[14] D. Bini, M. Capovani, F. Romani, and G. Lotti. O(n2.77) complexity
for n× n approximate matrix multiplication. Inform. Process. Lett. 8
no. 5, pages 234–235, 1979.

[15] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-
pipelining query execution. In CIDR, pages 225–237, 2005. URL
http://www.cidrdb.org/cidr2005/papers/P19.pdf.

[16] C. Borgelt. Efficient implementations of apriori and eclat.
In FIMI ’03, Proceedings of the IEEE ICDM Workshop
on Frequent Itemset Mining Implementations, volume 90 of
CEUR Workshop Proceedings. CEUR-WS.org, 2003. URL
http://sunsite.informatik.rwth-aachen.de/Publications/

CEUR-WS/Vol-90/borgelt.pdf.

[17] C. Borgelt. Recursion pruning for the apriori algorithm.
In FIMI ’04, Proceedings of the IEEE ICDM Workshop on
Frequent Itemset Mining Implementations, volume 126 of
CEUR Workshop Proceedings. CEUR-WS.org, 2004. URL
http://sunsite.informatik.rwth-aachen.de/Publications/

CEUR-WS/Vol-126/borgelt.pdf.

Bibliography 95

[18] C. Borgelt. An implementation of the fp-growth algorithm. In OSDM
’05: Proceedings of the 1st international workshop on open source data
mining, pages 1–5, New York, NY, USA, 2005. ACM. ISBN 1-59593-
210-0. doi: http://doi.acm.org/10.1145/1133905.1133907.

[19] S. Chakravarthy, J. Muthuraj, and R. Varadarajan. An objective
function for vertically partitioning relations in distributed databases
and its Distributed and parallel databases, Jan 1994.

[20] M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya. To-
wards estimation error guarantees for distinct values. In Proceedings of
the 19th ACM Symposium on Principles of Database Systems (PODS
’00), pages 268–279. ACM, 2000.

[21] F. Chin. An o (n) algorithm for determining a near-optimal compu-
tation order of matrix chain products. Communications of the ACM,
Jan 1978.

[22] W. Chu and I. Ieong. A transaction-based approach to vertical par-
titioning forrelational database systems. IEEE Transactions on Soft-
ware Engineering, Jan 1993.

[23] E. Cohen. Size-estimation framework with applications to transitive
closure and reachability. Journal of Computer and System Sciences,
55(3):441–453, Dec. 1997.

[24] E. Cohen. Structure prediction and computation of sparse matrix
products. J. Comb. Optim, 2(4):307–332, 1998.

[25] D. Coppersmith. Rectangular matrix multiplication revisited.
J. Complex., 13(1):42–49, 1997. ISSN 0885-064X. doi:
http://dx.doi.org/10.1006/jcom.1997.0438.

[26] D. Coppersmith and S. Winograd. On the asymptotic complexity
of matrix multiplication. Foundations of Computer Science, 1981.
SFCS’81. 22nd Annual Symposium on, pages 82–90, 1981.

[27] D. Coppersmith and S. Winograd. Matrix multiplication via arith-
metic progressions. In STOC ’87: Proceedings of the nineteenth an-
nual ACM symposium on Theory of computing, pages 1–6, New York,
NY, USA, 1987. ACM. ISBN 0-89791-221-7.

[28] D. Coppersmith and S. Winograd. On the asymptotic complexity
of matrix multiplication. Foundations of Computer Science, 1981.
SFCS’81. 22nd Annual Symposium on, pages 82–90, 2008.

[29] D. W. Cornell and P. S. Yu. An effective approach to vertical parti-
tioning for physical design of relational databases. IEEE Trans. Softw.
Eng., 16(2):248–258, 1990. ISSN 0098-5589.

96 Bibliography

[30] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set in-
tersections, unions, and differences. In soda00, pages 743–752, 2000.
URL http://doi.acm.org/10.1145/338219.338634.

[31] M. Dietzfelbinger and F. M. auf der Heide. Simple, efficient shared
memory simulations. In Proceedings of the 5th Annual ACM Sympo-
sium on Parallel Algorithms and Architectures, pages 110–119, Velen,
Germany, June 30–July 2, 1993. SIGACT and SIGARCH. Extended
abstract.

[32] D. Dor and U. Zwick. Selecting the median. In Proceedings of the 6th
annual ACM-SIAM Symposium on Discrete algorithms (SODA ’95),
pages 28–37. SIAM, 1995. ISBN 0-89871-349-8.

[33] D. Dubhashi, D. Dubhashi, D. Ranjan, and D. Ranjan. Balls and bins:
A study in negative dependence. Random Structures & Algorithms,
13:99–124, 1996.

[34] M. Eisner. Mathematical techniques for efficient record segmentation
in large shared databases. Journal of the Assoclauon for Computing
Machinery, Jan 1976.

[35] J. Erickson. Tail bounds, October 2005. URL
http://www.cs.uiuc.edu/class/fa05/cs473g/lectures/

10-tailbounds.pdf. University of Illinois, course CS473G notes,
lecture 10.

[36] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. Gpu clus-
ter for high performance computing. In SC ’04: Proceedings of the
2004 ACM/IEEE conference on Supercomputing, page 47, Washing-
ton, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2153-3.
doi: http://dx.doi.org/10.1109/SC.2004.26.

[37] W. Fang, M. Lu, X. Xiao, B. He, and Q. Luo. Frequent itemset
mining on graphics processors. In P. A. Boncz and K. A. Ross, editors,
Proceedings of the Fifth International Workshop on Data Management
on New Hardware, DaMoN 2009, Providence, Rhode Island, USA,
June 28, 2009, pages 34–42. ACM, 2009. ISBN 978-1-60558-701-1.
URL http://doi.acm.org/10.1145/1565694.1565702.

[38] S. Ganguly and B. Saha. On estimating path aggregates over stream-
ing graphs. In Proceedings of 17th International Symposium on Algo-
rithms and Computation, (ISAAC ’06), volume 4288 of Lecture Notes
in Computer Science, pages 163–172. Springer, 2006. ISBN 3-540-
49694-7.

Bibliography 97

[39] S. Ganguly, M. Garofalakis, A. Kumar, and R. Rastogi. Join-distinct
aggregate estimation over update streams. In Proceedings of the 24th
ACM Symposium on Principles of Database Systems (PODS ’05),
pages 259–270. ACM, 2005. ISBN 1-59593-062-0.

[40] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. D. Nguyen,
Y.-K. Chen, and P. Dubey. Cache-conscious frequent pattern
mining on a modern processor. In K. Böhm, C. S. Jensen, L. M.
Haas, M. L. Kersten, P.-Å. Larson, and B. C. Ooi, editors, Pro-
ceedings of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, August 30 - September 2, 2005, pages
577–588. ACM, 2005. ISBN 1-59593-154-6; 1-59593-177-5. URL
http://www.vldb2005.org/program/paper/thu/p577-ghoting.pdf.

[41] P. B. Gibbons. Distinct sampling for highly-accurate answers to dis-
tinct values queries and event reports. In Proceedings of the 27th In-
ternational Conference on Very Large Data Bases (VLDB ’01), pages
541–550. Morgan Kaufmann Publishers, 2001. ISBN 1-55860-804-4.
URL http://www.vldb.org/conf/2001/P541.pdf.

[42] S. S. Godbole. On efficient computation of matrix chain products.
IEEE Trans. Comput., 22:864–866, September 1973. ISSN 0018-9340.

[43] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUT-
erasort: high performance graphics co-processor sorting for large
database management. In S. Chaudhuri, V. Hristidis, and N. Poly-
zotis, editors, Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Chicago, Illinois, USA, June 27-
29, 2006, pages 325–336. ACM, 2006. ISBN 1-59593-256-9. URL
http://doi.acm.org/10.1145/1142473.1142511.

[44] F. G. Gustavson. Two fast algorithms for sparse matri-
ces: Multiplication and permuted transposition. ACM Trans.
Math. Softw., 4(3):250–269, 1978. ISSN 0098-3500. doi:
http://doi.acm.org/10.1145/355791.355796.

[45] P. L. Hammer and S. Rudeanu. Boolean Methods in Operations Re-
search and Related Areas. Springer Verlag, 1968. ISBN 0-387-04291-1.

[46] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent pat-
terns without candidate generation: A frequent-pattern tree ap-
proach. Data Min. Knowl. Discov, 8(1):53–87, 2004. URL
http://dx.doi.org/10.1023/B:DAMI.0000005258.31418.83.

[47] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo,
and P. Sander. Relational joins on graphics processors. In

98 Bibliography

SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data, pages 511–524, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-6. doi:
http://doi.acm.org/10.1145/1376616.1376670.

[48] C. A. R. Hoare. Algorithm 65: find. Commun. ACM, 4(7):321–322,
1961. ISSN 0001-0782.

[49] T. C. Hu and M. T. Shin. Computation of matrix chain products.
part i. SIAM J. COMPUT, Jan 1982.

[50] T. C. Hu and M. T. Shin. Computation of matrix chain products.
part ii. SIAM J. COMPUT., Jan 1984.

[51] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and
applications. J. Complex., 14(2):257–299, 1998. ISSN 0885-064X. doi:
http://dx.doi.org/10.1006/jcom.1998.0476.

[52] A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall
Advanced REference Series, Englewood Cliffs, NJ, 1988.

[53] T. Johnson. Performance measurements of compressed bitmap indices.
In VLDB ’99: Proceedings of the 25th International Conference on
Very Large Data Bases, pages 278–289, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-615-7.

[54] W. M. Jr, P. Schweitzer, and T. White. Problem decomposition and
data reorganization by a clustering technique. Operations Research,
Jan 1972.

[55] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi. H-store: a high-performance, distributed main memory
transaction processing system. Proc. VLDB Endow., 1(2):1496–1499,
2008.

[56] Klyuvev, V.V., and N. I. Kokovkin-Shcherbak. On the minimization of
the number of arithmetic operations for the solution of linear algebraic
systems of equations. Technical Report CS 24, Computer Science
Dept., Stanford University, 1965.

[57] M. N. Kolountzakis, G. L. Miller, R. Peng, and C. E. Tsourakakis.
Efficient triangle counting in large graphs via degree-based vertex par-
titioning. arXiv, cs.DS, Nov 2010.

[58] N. Leischner, V. Osipov, and P. Sanders. GPU sample sort. In 24th
International Parallel and Distributed Processing (IPDPS ’10). IEEE,
2010.

Bibliography 99

[59] E. Li and L. Liu. Optimization of frequent itemset mining on
multiple-core processor. In C. Koch, J. Gehrke, M. N. Garo-
falakis, D. Srivastava, K. Aberer, A. Deshpande, D. Florescu,
C. Y. Chan, V. Ganti, C.-C. Kanne, W. Klas, and E. J.
Neuhold, editors, Proceedings of the 33rd International Confer-
ence on Very Large Data Bases, University of Vienna, Austria,
September 23-27, 2007, pages 1275–1285. ACM, 2007. ISBN
978-1-59593-649-3. URL http://www.vldb.org/conf/2007/papers/

industrial/p1275-liu.pdf.

[60] P. Lilly. From voodoo to geforce: The awsome history of 3d graphics,
May 2009. URL http://www.maximumpc.com/article/features/

graphics extravaganza ultimate gpu retrospective.

[61] A. Lingas. A fast output-sensitive algorithm for boolean matrix mul-
tiplication. In Proceedings of the 17th European Symposium on Al-
gorithms (ESA ’09), volume 5757 of Lecture Notes in Computer Sci-
ence, pages 408–419. Springer, 2009. ISBN 978-3-642-04127-3. URL
http://dx.doi.org/10.1007/978-3-642-04128-0.

[62] W. Liu, Muller-Wittig, and B. Schmidt. Performance predictions for
general-purpose computation on gpus. pages 50 –50, sep. 2007. doi:
10.1109/ICPP.2007.67.

[63] K. G. Marty and J. Judice. On the complexity of finding stationary
points of nonconvex quadratic programs. Opsearch, 33(3):162–166,
1996.

[64] S. Menon. Allocating fragments in distributed databases. IEEE trans-
actions on parallel and distributed systems, Jan 2005.

[65] A. R. Meyer. Expectation & variance, May 2006. URL
http://www.cs.princeton.edu/courses/archive/fall06/cos341/

handouts/variance-notes.pdf. Massachusetts Institute of Technol-
ogy, course notes week 13.

[66] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995. ISBN 0-521-47465-5.

[67] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical partitioning
algorithms for database design. ACM Trans. Database Syst., 9(4):
680–710, December 1984. ISSN 0362-5915.

[68] S. B. Navathe and M. Ra. Vertical partitioning for database design:
a graphical algorithm. SIGMOD Rec., 18(2):440–450, 1989. ISSN
0163-5808.

100 Bibliography

[69] NVIDIA. Nvidia opencl best practices guide. 2009. URL
http://developer.download.nvidia.com/compute/cuda/

2 3/opencl/docs/NVIDIA OpenCL BestPracticesGuide.pdf.

[70] C. Ong, M. Weldon, D. Cyca, and M. Okoniewski. Acceleration of
large-scale fdtd simulations on high performance gpu clusters. pages
1 –4, jun. 2009. doi: 10.1109/APS.2009.5171722.

[71] Oracle. A technical overview of the sun oracle exadata stor-
age server and database machine. White paper, Septem-
ber 2009. URL http://www.oracle.com/us/solutions/

datawarehousing/039572.pdf.

[72] Oracle. Oracle exadata database machine overview, 2010. URL
http://www.oracle.com/ocom/groups/public/@otn/documents/

webcontent/128045.pdf.

[73] Oracle. Exadata price list, September 2010. URL
http://www.oracle.com/us/corporate/pricing/

exadata-pricelist-070598.pdf.

[74] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. E. Lefohn, and T. J. Purcell. A survey of general-purpose
computation on graphics hardware. 2007. ISSN 1467-8659.
URL http://www.blackwell-synergy.com/doi/abs/10.1111/

j.1467-8659.2007.01012.x.

[75] A. Pagh and R. Pagh. Scalable computation of acyclic joins. In PODS
’06: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 225–232, New
York, NY, USA, 2006. ACM Press. ISBN 1-59593-318-2.

[76] R. Pagh. Reduction of triangle reporting to boolean matrix multipli-
cation, 2009. Personal communication.

[77] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms,
51:122–144, 2004.

[78] V. Pan. Strassen’s algorithm is not optimal trilinear technique of
aggregating, uniting and canceling for constructing fast algorithms
for matrix operations. Foundations of Computer Science, 1978., 19th
Annual Symposium on DOI - 10.1109/SFCS.1978.34, pages 166–176,
1978.

[79] V. Pan. How can we speed up matrix multiplication? SIAM review,
26(3):393–415, 1984.

Bibliography 101

[80] V. Y. Pan. New combinations of methods for the acceleration of matrix
multiplications. Computers & Mathematics with Applications, 7(1):73
– 125, 1981. ISSN 0898-1221. doi: DOI: 10.1016/0898-1221(81)90009-
2.

[81] S. Pramanik and D. Vineyard. Optimizing join queries in distributed
databases. Software Engineering, IEEE Transactions on, 14(9):1319
–1326, Sept. 1988. ISSN 0098-5589.

[82] B. Rácz. nonordfp: An FP-growth variation without rebuilding the
FP-tree. In R. J. B. Jr., B. Goethals, and M. J. Zaki, editors, FIMI
’04, Proceedings of the IEEE ICDM Workshop on Frequent Itemset
Mining Implementations, Brighton, UK, November 1, 2004, volume
126 of CEUR Workshop Proceedings. CEUR-WS.org, 2004. URL
http://sunsite.informatik.rwth-aachen.de/Publications/

CEUR-WS/Vol-126/racz.pdf.

[83] B. Rácz, F. Bodon, and L. Schmidt-Thieme. On bench-
marking frequent itemset mining algorithms: from measurement
to analysis. In OSDM ’05: Proceedings of the 1st interna-
tional workshop on open source data mining, pages 36–45, New
York, NY, USA, 2005. ACM. ISBN 1-59593-210-0. doi:
http://doi.acm.org/10.1145/1133905.1133911.

[84] D. Sacca and G. Wiederhold. Database partitioning in a cluster of
processors. ACM Transactions on Database Systems (TODS), Jan
1985.

[85] N. Santhanam. Random variables: variance, March 2009. URL
http://www-ee.eng.hawaii.edu/∼prasadsn/11.%20variance.pdf.

[86] R. Sarathy, B. Shetty, and A. Sen. A constrained nonlinear 0-1 pro-
gram for data allocation. European Journal of Operational Research,
102(3):626–647, November 1997.

[87] T. Schank and D. Wagner. Finding, counting and listing all triangles
in large graphs, an experimental study. Experimental and Efficient
Algorithms, pages 606–609, 2005.

[88] A. Schönhage. Partial and total matrix multiplication. SIAM Jour-
nal on Computing, 10(3):434–455, 1981. doi: 10.1137/0210032. URL
http://link.aip.org/link/?SMJ/10/434/1.

[89] R. Sedgewick. Algorithms. Addison-Wesley, 1988.

[90] J. Son and M. Kim. An adaptable vertical partitioning method in
distributed systems. The Journal of Systems & Software, Jan 2004.

102 Bibliography

[91] L. Stockmeyer and U. Vishkin. Simulation of parallel random access
machines by circuits. SIAM J. Comput., 13(2):409–422, May 1984.

[92] M. Stonebraker, S. R. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era (it’s
time for a complete rewrite). In VLDB, Vienna, Austria, 2007.

[93] V. Strassen. Gaussian elimination is not optimal. Numerische Math-
ematik, 13(4):354–356, 1969.

[94] T. Uno, M. Kiyomi, and H. Arimura. LCM ver. 2: Efficient min-
ing algorithms for frequent/closed/maximal itemsets. In R. J. B.
Jr., B. Goethals, and M. J. Zaki, editors, FIMI ’04, Proceed-
ings of the IEEE ICDM Workshop on Frequent Itemset Mining
Implementations, Brighton, UK, November 1, 2004, volume 126
of CEUR Workshop Proceedings. CEUR-WS.org, 2004. URL
http://sunsite.informatik.rwth-aachen.de/Publications/

CEUR-WS/Vol-126/uno.pdf.

[95] E. Upfal and A. Wigderson. How to share memory in a distributed
system. Journal of the ACM, 34(1):116–127, Jan. 1987.

[96] Wikipedia. Graphics processing unit, 2010. URL
http://en.wikipedia.org/wiki/Graphics processing unit.

[97] D. E. Willard. Efficient processing of relational calculus expressions us-
ing range query theory. In SIGMOD ’84: Proceedings of the 1984 ACM
SIGMOD international conference on Management of data, pages 164–
175, New York, NY, USA, 1984. ACM. ISBN 0-89791-128-8.

[98] D. E. Willard. Quasilinear algorithms for processing relational calculus
expressions (preliminary report). In PODS ’90: Proceedings of the
ninth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 243–257, New York, NY, USA, 1990. ACM.
ISBN 0-89791-352-3.

[99] V. Williams and R. Williams. Triangle detection versus matrix mul-
tiplication: A study of truly subcubic reducibility.

[100] S. Winograd. A new algorithm for inner product. IEEE
Trans. Comput., 17(7):693–694, 1968. ISSN 0018-9340. doi:
http://dx.doi.org/10.1109/TC.1968.227420.

[101] L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998. ISBN
0-471-28366-5.

[102] K. Wu, E. Otoo, and A. Shoshani. An efficient
compression scheme for bitmap indices, 2006. URL
http://citeseer.ist.psu.edu/article/wu04efficient.html.

Bibliography 103

[103] M. Yannakakis. Algorithms for acyclic database schemes. In Very
Large Data Bases, 7th International Conference, September 9-11,
1981, Cannes, France, Proceedings, pages 82–94. IEEE Computer So-
ciety, 1981.

[104] Y. Ye and C.-C. Chiang. A parallel apriori algorithm for
frequent itemsets mining. In SERA, pages 87–94. IEEE
Computer Society, 2006. ISBN 0-7695-2656-X. URL
http://doi.ieeecomputersociety.org/10.1109/SERA.2006.6.

[105] R. Yuster and U. Zwick. Fast sparse matrix multiplication.
ACM Trans. Algorithms, 1(1):2–13, 2005. ISSN 1549-6325. doi:
http://doi.acm.org/10.1145/1077464.1077466.

[106] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms
for fast discovery of association rules. 3rd Intl. Conf. on Knowledge
Discovery and Data Mining, 20, 1997.

[107] M. J. Zaki. Parallel and distributed association mining: A survey.
IEEE Concurrency, 7(4):14–25, Oct./Dec. 1999. ISSN 1092-3063.
URL http://www.math.utah.edu/∼beebe.

[108] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar ram-
cpu cache compression. In ICDE ’06: Proceedings of the 22nd In-
ternational Conference on Data Engineering, page 59, Washington,
DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2570-9. doi:
http://dx.doi.org/10.1109/ICDE.2006.150.

