
[1]

SIZE MATTERS
Tips on database tuning...

WHY BOTH SIZE AND ORDER MATTER
The choice of data types for table columns may have significant impact on performance. More than you might
think. This document describes why, and gives some concrete advice for unloading your database.

If you are impatient, skip all of this text and go

straight to either the conclusions box to the

right or the more elaborate Lessons Learned

section on the last page, follow the advice

there, and live happily ever after. Sort of.

However, I recommend reading on, to get a

better understanding of what is going on.

Let's first take a quick glance behind the

scenes of the storage layer in common

database engines, then explain the

mechanisms behind the advice to come, and

last, show some concrete experiments

supporting the theory.

The storage layer - a quick
overview
In most commonly known databases, tables

are stored row-wise, and rows from the same

table are physically organized in pages,

typically of the size of an 8 kb disk block. The

pages are, not surprisingly, stored on disk for

persistency, that is, to prevent data loss when

someone from the cleaning staff pulls out the

server’s power plug to make room for the

vacuum cleaner’s ditto. An access to a disk

block is typically referred to as an I/O (short for

Input/Output).

Unfortunately, disk access is extremely

slow compared to RAM access. Fetching a

random disk block from a 7200 RPM SATA disk

takes roughly 13 milliseconds (or more than 40

million CPU clock cycles), whereas random

access to RAM takes about 83 nanoseconds

(or about 250 CPU clock cycles). So, the disk

is around 160,000 times slower than RAM.

Think about it. 160,000 times slower! A fast

SSD has a seek time of 0.08 ms, but that is still

more than 900 times slower than RAM.

Ironically, one of
the worst things a
database can be

exposed to is data

Rasmus Resen Amossen • http://rasmus.resen.org • July 2011

1

100

10,000

1,000,000

100,000,000

RAM SSD Disk

N
a
n
o
s
e
c
o
n
d
s

At last 900 times faster than any disk!

CONCLUSIONS
✓ Random primary keys

such as random GUIDs
perform horribly.
Consider using a
sequential integer
instead.

✓ Reduce row widths and
table sizes as much
as possible. Narrow
rows perform better
than wide rows - even
with compression.

✓ Cache high-level data
structures in a fast
memory cache to ease
the load on the
database.

[2]

For the same reason, databases use a

RAM buffer to cache data pages and reduce

the need for time expensive disk access.

Whenever a query needs to read a table row,

the database first looks for its corresponding

page in the buffer. If the page is not found

there, we have a “buffer miss”, and it will then

have to be fetched from disk, thereby

increasing the time to find it with a factor

between 900 and 160,000. After being fetched

from disk, the page is stored in buffer (possibly

replacing another buffered page) to speed up

subsequent access to it. The term “buffer hit

ratio” describes the fraction of pages needed

by a query that can be fetched directly from

buffer when needed. I believe we are ready to

conclude: if a query has a low buffer hit ratio it

will generally perform horribly.

So, can we do anything to increase the

buffer hit ratio of a query, besides increasing

the buffer size?

Actually, we can do a lot, but this text will

mainly focus on two things: decreasing the row

widths and choosing a good row ordering,

which also turns out to have a significant

impact on the buffer hit ratio.

Less is more
Intuitively, more narrow rows can fit into a

single page than wide rows, and therefore a

table with narrow rows can be stored in a

smaller amount of pages than a table with wide

rows. Also, the probability of any given page to

exist in the buffer when needed becomes

larger for small tables, so the narrow-row table

(with narrow columns in terms of small data

types) will likely give a higher buffer hit ratio

and perform better than a wide-row table. The

practical experiments shown later support this

theory.

Some databases offer various kinds of

compression, e.g. row compression and page

compression. By compressing the data we

almost obtain the same effect as choosing

small data types. But the total size of a

compressed table (independent of

compression type) will likely still be smaller for

narrow tables than for wide tables, so the rule

of thumb still holds: always choose small data

types!

Before diving into some practical

experiments that illustrate this size-matters

theory in practice, let's have a look at how

rows are actually located when needed.

THE BUFFER

Shorter rows, less space
The database uses a page
buffer to decrease the
need for costly I/O.
Intuitively, the narrower
rows, the fewer pages are
needed to store a complete
table. And the larger the
probability is that any
given row is already in a
buffered page when needed.

query

If not,
read it

from
disk. Put
in buffer

Read
from

buffer

1

2

3

Long rows
Few rows
per page

Many
pages

Short rows
Many rows
per page

Few
pages

= Poor buffer
utilization

= Good buffer
utilization

Is page
already

in
buffer?

SAME THING, DIFFERENT TERMS

Wasting
space may
decrease

speed

One buffer holding multiple buffer pages or buffer slots,
or one buffer pool holding multiple buffers. You may see
different terms depending on where you read.

[3]

Indexing
A specific row can be located in multiple ways:

either by simply traversing each and every

page related to the row’s table (this is often

referred to as a table scan) or by preceding the

row fetch with a lookup in a relevant index. The

former approach is, needless to say, slow if

only a small fraction of the rows are relevant

for a query. Conversely, depending on which

columns are indexed, the latter approach may

be suboptimal if most of the rows are needed,

e.g. in a query that summarizes a column value

across all or most table rows. So, whether or

not to utilize an index, and which index to use,

depends on a number of factors (mostly about

minimizing I/O), but luckily the database’s

query optimizer will make that decision for you

- and will even do a good job in most cases.

The far most commonly used index type

is a B-tree (B stands for "balanced"), and this

is also the index type that will be created by

default for all primary keys and when you

execute a “create index” SQL statement.

In general, the B-tree index maps column

values (called keys) to either pointers to table

rows or the entire rows themselves. The B-

tree’s main advantage is that it is ordered and

balanced. Due to the ordering we can quickly

navigate to the relevant leaf node without

visiting all nodes, and all leaf nodes are equally

deep down the tree, making lookup times

reliable, no matter what key we search for. In

the database world we love all kinds of

reliability!

The technical details of B-trees will not be

covered here, but in case you are not familiar

with them already, I really encourage you to

read up on B-trees ASAP! Wikipedia or any

introductory book on databases is a place to

start.

Well, a few facts are too important to

leave out:

Space

Each node in a B-tree is stored in a data page

and may therefore induce an expensive I/O

when accessed. New keys are inserted in the

leaf pages, and whenever a page becomes full,

it is split into two. And here is the important

part: under normal circumstances 50% of the

contents of the full page is put on the first

node, and the rest on the second node. This

gives us two nodes that are only half-way full,

which is a good strategy if the keys are

inserted in random order. However, filling the

buffer with only half-full pages is clearly a sub-

optimal utilization of the costly buffer space. If

the keys being inserted are monotonically

increasing, the database can utilize this fact to

make a far more space efficient split strategy:

SQL Server will fill leaf nodes entirely (splitting

them 100% / 0% instead of 50% / 50%), and

Oracle will even optimize splits of internal

nodes, splitting them 90% / 10%. This

optimization has a huge impact on the

performance, as we shall see later.

In the general case, we have no influence

on the order in which keys are inserted, but in

one important case we do: primary keys! So,

using a monotonically increasing type as

primary key will automatically imply far better

space efficiency and thus a far better

performance.

Order

There is one more reason for choosing a

monotonically increasing type as primary key:

a B-tree index can be a “clustering index”

which means that the table rows are physically

organized in the order given by the index key.

In most, if not all, databases, a clustered index

is the physical representation of the table, in

the sense that the leaf pages contain the real

data rows instead of just a pointer to them. A

clustered index uniquely defines the row

ordering, so at most one clustered index can

exist per table. The order-by-key paradigm has

some side effects: if keys for two rows are

close, chances are high that these rows are

located in the same page or in consecutive

pages. In other words: when the keys

somehow indicate a relationship between the

rows, “related” (whatever this means) rows will

tend to be on the same page or in consecutive

pages, and they can therefore be accessed

using a minimal amount of I/O. Conversely, if

two keys are far apart, the corresponding rows

will probably be stored in different pages, and,

if not cached in buffer, require an increased

amount of expensive I/O.

Let's have a closer look at three common

choices of data types for primary keys: random

GUIDs, sequential GUIDs and integers. Well,

and strings...

Sequential key order is nice
In B-trees, keys are
inserted at leaf level,
and some of the keys
propagate up in the tree
to guide the search. If
the keys are sequential,
the leaf pages will be
100% filled, giving a
really compact tree.
Oracle even splits inner
nodes cleverly in that
case! If the key order is
random, this optimization
is not obtained.

KEY ORDER

8 5 1 4 72 42 3

67 68 69 70 71 72

[4]

point when the server is rebooted. Advantages

of S-GUIDs include:

✓ they are sequential and will therefore

perform significantly better than R-GUIDs,

as we shall see later;

✓ they are unique across systems;

✓ the datatype is still “GUID”, meaning that

existing datatypes for table columns and

client code can stay unaltered when

transforming R-GUIDs to S-GUIDs.

Drawbacks of S-GUIDs:

- the strict monotonicity may break upon

server reboots;

- there is a single-point-of-origin;

- they are still 16 bytes wide, which is a lot for

an ID;

- the privacy property of R-GUIDs doesn't

exist for S-GUIDs.

Integers

In the good old days, before the widespread

use of GUIDs, a common choice for primary

key was a sequentially increasing integer,

which is a natively supported datatype in most

databases. Integers are typically only 4 (or 8)

bytes wide which is more than sufficient for

most (all) cases. Think about it: will there ever

pass more than 231 = 2 billion rows (or the

double amount for the unsigned type) through

your table? Most likely not. And will there ever

pass more than 263 = 9,223[and 15 more digits]

through? Certainly not! A signed 8 byte integer

allows 29 million rows to be inserted every

second for 10,000 years! Advantages of

sequential integers:

✓ they are sequential and therefore have all the

performance goodies that come with this

property;

✓ the sequence is stable across reboots;

✓ they are only 4 bytes wide. Or 8 bytes in the

very rare cases where 4 bytes is not enough.

For unclustered indexes this gives a

relatively better page utilization compared to

GUIDs!

✓ they are easy to read and type in manually

for testing purposes.

Drawbacks:

- an internal shared resource implies a small

overhead for locking;

- the single-point-of-origin;

- the potential privacy problem described

above.

Strings

Technically, there is also strings, which I have

actually seen used as primary key type

surprisingly often.

While they might be easy to read and

interpret, they must either be entered manually

or contain some auto-generated random or

sequential element in which case a GUID or

preferably an integer could, technically, have

been used instead. The readability should (and

can) be handled in other ways. The advantage

of strings:

✓ they are easy to read.

Disadvantages:

- strings, and the data structures they imply,

will most likely be overwhelmingly huge and

space inefficient compared to a sequential

integer;

- the potential privacy problem described

above.

Typical key types
Random GUIDs

A conventional GUID is a 16-byte Globally

Unique IDentifier with a pseudo-random

behavior which is guaranteed to be, well,

world-wide unique. For the sake of

abbreviation, let’s refer to them as R-GUIDs.

Here is an example of three R-GUIDs:

0AF92AC9-8B45-4B9F-9E0D-E6A5C9023E91
8A9EF766-0A4E-437D-8DF9-E389CD1C7543
5B899EE7-7F0D-40FE-A788-4A20E8135E92

R-GUIDs are nice because

✓ they can be created programmatically

without a roundtrip to the database. No

single-point-of-origin, which is good when

data is created in a distributed environment;

✓ R-GUIDs are unique across systems which

is a practical property for data exchange;

✓ their random nature will spread

consecutively inserted rows into different

pages, thereby reducing or eliminating

access contention on a single page;

✓ privacy concerns may require the IDs of

related entities to be obfuscated and not be

deducible from time-of-insertion.

But they also have some major drawbacks:

- their random nature will imply an awful lot of

I/O for both reads and writes (SELECTs and

INSERTs/UPDATEs);

- we have seen that choosing a primary key

that somehow keeps related rows together

will save I/O. But what is a good choice of

relationship? It's certainly not random!

- in fact, because of their random nature, an

R-GUID is probably the worst possible key

for most practical use cases;

- 16 bytes are likely far more than needed.

Especially for “normal” non-clustering

indexes this will oversize the index

significantly.

Sequential GUIDs

SQL Server provides a sequential GUID

datatype (let's denote it S-GUID) that almost

eliminates the largest drawback for R-GUIDs:

the randomness. S-GUIDs may look like this:

21941C1C-6DAA-E011-AC65-6C626DCA5E45
23941C1C-6DAA-E011-AC65-6C626DCA5E45

25941C1C-6DAA-E011-AC65-6C626DCA5E45

Since S-GUIDs are created on the server, they

cannot be created programmatically on the

client side, but as shown later, this does not

necessarily imply an increased number of

database roundtrips. You should notice that S-

GUIDs are not guaranteed to be sequential

across a reboot. That is, the monotonically

increasing sequence may get a new starting

BUT...
1. In most cases, the single-point-of-origin property is

not a problem: we do not have to use an extra database
roundtrip to obtain the generated key as seen on the
next page. And even if we did (which we don't),
chances are that the performance gain obtained by
switching from R-GUIDs to sequential integers far
dominates the performance reduction induced by the
extra roundtrip.

2. Personally, I have never experienced a situation where
the order of row insertion had to be obfuscated by
randomizing the primary key. Never. Such situations
exist though, but be really really sure that your
situation is one of them before you decide to use a
random primary key.

[5]

High-level memory caching
A high-level memory cache is not something

the database provides natively, but

nevertheless a concept everyone should

consider as a fundamental part of their

application’s architecture: the database buffer

is not buffering high-level objects in contrast to

a memory cache which stores the structures

exactly as we need them, thereby saving

(expensive) build time; the overhead from the

database access may constitute a significant

part of the total transaction time; and by using

a distributed cache, the amount of memory

practically becomes unlimited. So, if an

application uses a number of data structures

that require more than a moderate amount of

database or CPU work to build, a significant

performance boost can probably be achieved

by caching these high-level data structures in a

fast memory cache.

The expected impact from a memory cache

depends on the data structure access pattern,

but generally increases with the ratio between

how often they are read and updated. Actually, I

will make a somewhat bold statement: in the

general case, if you ever expect your

application to scale well, a high-level object

memory cache is simply a must!

The great thing about caches is that they

can be implemented iteratively object-by-

object, starting with the heaviest bottleneck-

object first.

A common choice of memory cache that

is also used by giants such as Wikipedia, Flickr,

Twitter, YouTube, and others is memcached,

which is an extremely (!) fast and distributed

memory cache. In short, distributed means that

if you ever need more cache memory, just add

machines to the cache pool, and you are good

to go. RANDOM FACT #2
Implementing a memory cache can be easy
GetProduct(id) {
 cacheKey = ‘products’ + id
 if(ExistsInCache(cacheKey))
 return GetFromCache(cacheKey);
 product = BuildComplicatedProduct(id);
 StoreInCache(cacheKey, product);
 return product;
}

StoreProduct(product)
{
 UpdateDatabase(product);
 cacheKey = ‘products’ + product.id;
 RemoveFromCache(cacheKey);
}

RANDOM FACT #1
In SQL Server, sequential integers and S-GUIDs can be
generated using, respectively, the SQL:

 create table myIntTable(
 id int not null identity primary key,
 stuff varchar(100)
);

 insert into myIntTable(stuff) values (‘someStuff’);

and

 create table mySGUIDTable(
 id uniqueidentifier not null
 default newsequentialid() primary key,
 stuff varchar(100)
);

 insert into mySGUIDTable(stuff) values (‘someStuff’);

We can retrieve the generated IDs by using the “output
clause” in TSQL, or, for sequential integers, by using
two build-in functions. No need for an extra database
roundtrip:

scope_identity() returns the latest generated identity
across all tables within the current connection.

ident_current(‘tableName’) returns the latest generated
identity for the specified table within the current
connection.

Example:
 insert into myIntTable(stuff) values (‘someStuff’);
 insert into myChildTable(parentId, otherStuff)
 values (scope_identity(), ‘someOtherStuff’);

Unload the
database with

a memory
cache

...

[6]

Some practical experiments
A number of practical experiments was

carried out to see if the theory from the

preceding pages really holds. The experiments

were performed on a 2.8 GHz 8 core machine

with 8 GB RAM, and a 7200 RPM SATA disk,

running 64 bit Windows 7 and SQL Server

2008. We compare the efficiency of three basic

classes of operations for varying type of

primary key, and varying row size. The

operations measured are:

1. insertion of 500.000 new rows in a table;

2. read access to 100 rows in the order of

their insertion;

3. read access to 100 randomly picked rows.

The sequence of experiments was executed 10

times in order to minimize the influence of

unrelated events on the machine, and the

measurements shown here are (mostly) the

averages of the seen numbers.

The row sizes shown in the graphs are the total

column widths. Note that the shown sizes

exclude the metadata associated to each row

(at least 9 bytes).

Results for row insertion

The graphs in the box above illustrate the

results for row insertion. As the variance in

execution time was relatively large for this

experiment, the first graph shows the

execution time for each individual test run

together with a linear trend line. There are three

immediate observations:

1. the execution time increases with the row

width;

2. the execution time is almost given by the

amount of I/O; and

3. integers and S-GUIDs perform almost

equally good, while R-GUIDs perform

poorly.

The two smaller graphs to the right give a good

explanation to these observations: as the rows

grow, so does the total table size, and our

buffer hit ratio consequently decreases. Also,

the pages storing the table with an R-GUID as

primary key is packed much less efficiently

(less than 75% full) than the pages holding

integer and S-GUID keys (which are almost

100% full).

Quick bonus info: a call to identity() for

generating a sequential integer is actually

significantly slower than a call to

newsequentialid() for generating an S-GUID.

This is because the former needs to lock a

shared resource, while the latter generates the

ID without maintaining an internal state.

INSERTING 500.000 ROWS
Time usage

0

5

10

15

20

25

30

35

40

32 1024

S
e
c
o
n
d
s

Row size

Integer S-GUID R-GUID

 The graphs compare performance of row insertion for varying row size and type of
primary key. Shorter rows implies a smaller amount of I/O and a smaller execution time.
Also, R-GUIDs imply a lower page density, a larger table, more I/O and thus poorer
performance.

Logical writes Table size

0

20

40

60

80

100

120

32 1024

A
v
e
r
a
g
e

w
r
i
t
e
s

(
1
0
0
0

p
a
g
e
s
)

Row size

0

30

60

90

120

32 1024

1
0
0
0

p
a
g
e
s

Row size

Page density

0

25

50

75

100

32 1024
P
e
r
c
e
n
t
a
g
e

Row size

[7]

Results for row reading

Take a look at the graphs to the right,

illustrating the execution time and I/O for

reading 100 rows in random and sequential

order, respectively. In the first case, reading

random rows, all three datatypes perform

almost identically, with a small advantage to

the integers. As we shall see in a moment,

the performance for all datatypes is poor,

and this is because random access is the

most buffer-unfriendly access pattern

imaginable.

In contrast, when reading consecutive or

nearly-consecutive rows, we can really take

advantage of the buffer: many of the rows

will exist in the same already buffered page,

and by prefetching multiple pages, the total

amount of I/O costs can also be optimized.

This can be seen in the rightmost graphs,

where integers and S-GUIDs totally

outperform R-GUIDs with a minimum

amount of I/O, and an almost non-increasing

execution time when the row size increases.

In these experiments, integers and S-GUIDs

are 4 to 10 times faster than R-GUIDs.

Unclustered indexes

Not surprisingly, we see that an unclustered

index on a 4 byte integer is smaller than an

index on any 16 byte GUID (see graph). And

as for tables and clustered indexes, wider

index keys means larger index structure.

Notice that the GUID index is actually less

than 4 times larger than the integer index.

This is because indexes also store metadata

with each entry.

READING

For random access, the execution time suffers from
poor buffer and I/O utilization. For sequential
access, the buffer really speeds things up! Well,
for sequential keys (not R-GUIDs), that is...

Read 100
random rows

0

500

1000

1500

2000

32 1024A
v
e
r
a
g
e

m
i
l
l
i
s
e
c
o
n
d
s

Row size

0

125

250

375

500

32 1024

P
h
y
s
i
c
a
l

r
e
a
d
s

(
p
a
g
e
s
)

Row size

Read 100
consecutive rows

0

500

1000

1500

2000

32 1024A
v
e
r
a
g
e

m
i
l
l
i
s
e
c
o
n
d
s

Row size

0

125

250

375

500

32 1024
P
h
y
s
i
c
a
l

r
e
a
d
s

(
p
a
g
e
s
)

Row size

9

Ouch!

12

Integer S-GUID R-GUID

UNCLUSTERED INDEX

0

500

1000

1500

2000

2500

Integer R-GUID 1 R-GUID 2

P
a
g
e
s

An unclustered index on 500,000 values is
smaller for integers than for R-GUIDs. The
“R-GUID 1” bar above shows the index size
immediately after insertion, while “R-GUID
2” shows the size after an index re-build.

Our
experiments

seem to support
the theory

[8]

• R-GUIDs perform horribly as primary keys

as soon as the number of rows is anything

but trivial. If no other choice is obvious, use

(small) sequential integers instead as the

database can utilize their monotonicity to

highly improve both space utilization and I/O

costs. Well, as described earlier, there exist

situations where random keys are exactly

what you want, but these situations are rare,

and you should be absolutely certain about

your privacy or contention problem before

following that path. To read more about this

and relevant situations, google “reverse key

indexing”.

• Use small datatypes whenever possible.

Every bit counts, so never use a larger

datatype than needed. Small datatypes give

a better space utilization and will likely give

you a higher buffer hit ratio. This is

especially true for unclustered indexes

where a change of column width will be

higher, relative to the total row width in the

index.

• Talking about space: be careful to only

include relevant columns in multi-column

indexes. Needless to say, the more

columns, the wider index entries.

• Be careful when representing various kinds

of categories and semi-IDs as strings.

Especially when the number of rows is large.

Strings are wider than integers, so probably

you would get a better performance by

putting these strings/labels in a separate ID-

to-label table and referring to the relevant

(small integer) IDs in the large original table

(and in your code) instead. If the amount of

categories/labels is small, the ID-to-label

table will quickly exist entirely in buffer.

Besides, you can then easily

rename a category without

destroying the references to it -

just rename the relevant row in the

ID-to-label table.

• A common way to reduce

the need for table joins is

to replicate columns from

one of the involved tables

into the other table(s).

This technique is called de-

normalization. Surely, this

may avoid accessing the table

whose columns are now replicated, but it

also increases the row size of the target

table. Furthermore, all copies of the

replicated columns must be accessed when

updated! Depending on the access pattern,

the performance decrease induced by the

lower buffer hit ratio and increased write

costs may be much larger than the

performance increase gained from saving

the join. In the general case you should

therefore avoid de-normalization, and be

absolutely sure that it will actually have a

positive performance impact before you do

it.

• Clustering rows by a foreign key is a way

to co-locate related rows. However, carefully

analyze that the actual access pattern

benefits from this choice of clustering (pay

special attention to the page density and

sequential access of subsets within a single

foreign key).

• If your tables are defined indirectly from

code (programmatically) using a class

persister, be careful to only persist clean

native types as table columns: depending

on the class persister, a high-level

class defined as “column” may be

expanded to multiple native-type columns

by the class persister. This can be an

expensive affair due to the possible

considerable extra row width. There is

probably a reason why the high-level class is

defined as its own, instead of being

“merged” with the class you are persisting: if

there is a one-to-many or many-to-many

relationship you will get multiple identical

occurrences of the same object in your

table. Not space efficient. And if you modify

one of the high-level objects, all its

representatives in the table will have to be

updated as well, probably causing a massive

amount of I/O. Chances are that you would

be better of with a normalized design,

putting the high-level objects in their own

table and referring to them by their primary

key (e.g. a small integer) in the main table

instead.

• Use a high-level memory cache, such as

memcached, to speed up the retrieval of

high-level data structures by taking off the

corresponding load from the database and

CPU. When used right, a memory cache can

be the difference between snail and rail!

LESSONS LEARNED
Basically, there is only one fundamental goal:
save space, save I/O! This implies...

Further reading
There has been written a lot on database

tuning, and it can be hard to find

something good. I recommend the

following:

• A great all-round book that covers a lot
of tuning tips, loaded with practical
experiments: Database Tuning -
Principles, Experiments, and
Troubleshooting Techniques by Dennis
Elliott Shasha, Philippe Bonnet and Jim
Grey.

• An inspiring website on high scalability
with lots of insights from the big
players and with numerous suggestions
for further reading:
www.highscalability.com

• The “behind the scenes” book for your
database. E.g. Microsoft SQL Server
2008 Internals by Kalen Delaney.

• The blogs on sqlskills.com (for SQL
Server) or asktom.oracle.com (for
Oracle).

Check it out...
Did you know that databases are not all

“row stores” like SQL Server, Oracle, DB2,

MySQL, PostgrSQL, etc? Other types

may better fit your needs. Google the

following keywords: “cassandra”,

“vectorwise”, “voltdb.com”,

“vertica.com”, “column store”, “key value

store”, “hadapt”.

Great design,
great speed

