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SIZE MATTERS
Tips on database tuning...

WHY BOTH SIZE AND ORDER MATTER
The choice of data types for table columns may have significant impact on performance. More than you might 
think. This document describes why, and gives some concrete advice for unloading your database.

If you are impatient, skip all of this text and go 

straight to either the conclusions box to the 

right or the more elaborate Lessons Learned 

section on the last page, follow the advice 

there, and live happily ever after. Sort of. 

However, I recommend reading on, to get a 

better understanding of what is going on.

Let's first take a quick glance behind the 

scenes of the storage layer in common 

database engines, then explain the 

mechanisms behind the advice to come, and 

last, show some concrete experiments 

supporting the theory.

The storage layer - a quick 
overview
In most commonly known databases, tables 

are stored row-wise, and rows from the same 

table are physically organized in pages, 

typically of the size of an 8 kb disk block. The 

pages are, not surprisingly, stored on disk for 

persistency, that is, to prevent data loss when 

someone from the cleaning staff pulls out the 

server’s power plug to make room for the 

vacuum cleaner’s ditto. An access to a disk 

block is typically referred to as an I/O (short for 

Input/Output).

Unfortunately, disk access is extremely 

slow compared to RAM access. Fetching a 

random disk block from a 7200 RPM SATA disk 

takes roughly 13 milliseconds (or more than 40 

million CPU clock cycles), whereas random 

access to RAM takes about 83 nanoseconds 

(or about 250 CPU clock cycles). So, the disk 

is around 160,000 times slower than RAM. 

Think about it. 160,000 times slower! A fast 

SSD has a seek time of 0.08 ms, but that is still 

more than 900 times slower than RAM.

Ironically, one of 
the worst things a 
database can be 

exposed to is data
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At last 900 times faster than any disk!

CONCLUSIONS
✓ Random primary keys 

such as random GUIDs 
perform horribly. 
Consider using a 
sequential integer 
instead.

✓ Reduce row widths and 
table sizes as much 
as possible. Narrow 
rows perform better 
than wide rows - even 
with compression.

✓ Cache high-level data 
structures in a fast 
memory cache to ease 
the load on the 
database.
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For the same reason, databases use a 

RAM buffer to cache data pages and reduce 

the need for time expensive disk access. 

Whenever a query needs to read a table row, 

the database first looks for its corresponding 

page in the buffer. If the page is not found 

there, we have a “buffer miss”, and it will then 

have to be fetched from disk, thereby 

increasing the time to find it with a factor 

between 900 and 160,000. After being fetched 

from disk, the page is stored in buffer (possibly 

replacing another buffered page) to speed up 

subsequent access to it. The term “buffer hit 

ratio” describes the fraction of pages needed 

by a query that can be fetched directly from 

buffer when needed. I believe we are ready to 

conclude: if a query has a low buffer hit ratio it 

will generally perform horribly.

So, can we do anything to increase the 

buffer hit ratio of a query, besides increasing 

the buffer size? 

Actually, we can do a lot, but this text will 

mainly focus on two things: decreasing the row 

widths and choosing a good row ordering, 

which also turns out to have a significant 

impact on the buffer hit ratio.

Less is more
Intuitively, more narrow rows can fit into a 

single page than wide rows, and therefore a 

table with narrow rows can be stored in a 

smaller amount of pages than a table with wide 

rows. Also, the probability of any given page to 

exist in the buffer when needed becomes 

larger for small tables, so the narrow-row table 

(with narrow columns in terms of small data 

types) will likely give a higher buffer hit ratio 

and perform better than a wide-row table. The 

practical experiments shown later support this 

theory.

Some databases offer various kinds of 

compression, e.g. row compression and page 

compression. By compressing the data we 

almost obtain the same effect as choosing 

small data types. But the total size of a 

compressed table (independent of 

compression type) will likely still be smaller for 

narrow tables than for wide tables, so the rule 

of thumb still holds: always choose small data 

types!

Before diving into some practical 

experiments that illustrate this size-matters 

theory in practice, let's have a look at how 

rows are actually located when needed.

THE BUFFER

Shorter rows, less space
The database uses a page 
buffer to decrease the 
need for costly I/O.
Intuitively, the narrower 
rows, the fewer pages are 
needed to store a complete 
table. And the larger the 
probability is that any 
given row is already in a 
buffered page when needed.

query

If not, 
read it 

from 
disk. Put 
in buffer

Read 
from 

buffer

1

2

3

Long rows
Few rows 
per page

Many 
pages

Short rows
Many rows 
per page

Few 
pages

= Poor buffer
utilization

= Good buffer
utilization

Is page  
already 

in 
buffer?

SAME THING, DIFFERENT TERMS

Wasting 
space may 
decrease 

speed

One buffer holding multiple buffer pages or buffer slots, 
or one buffer pool holding multiple buffers. You may see 
different terms depending on where you read.
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Indexing
A specific row can be located in multiple ways: 

either by simply traversing each and every 

page related to the row’s table (this is often 

referred to as a table scan) or by preceding the 

row fetch with a lookup in a relevant index. The 

former approach is, needless to say, slow if 

only a small fraction of the rows are relevant 

for a query. Conversely, depending on which 

columns are indexed, the latter approach may 

be suboptimal if most of the rows are needed, 

e.g. in a query that summarizes a column value 

across all or most table rows. So, whether or 

not to utilize an index, and which index to use, 

depends on a number of factors (mostly about 

minimizing I/O), but luckily the database’s 

query optimizer will make that decision for you 

- and will even do a good job in most cases.

The far most commonly used index type 

is a B-tree (B stands for "balanced"), and this 

is also the index type that will be created by 

default for all primary keys and when you 

execute a “create index” SQL statement.

In general, the B-tree index maps column 

values (called keys) to either pointers to table 

rows or the entire rows themselves. The B-

tree’s main advantage is that it is ordered and 

balanced. Due to the ordering we can quickly 

navigate to the relevant leaf node without 

visiting all nodes, and all leaf nodes are equally 

deep down the tree, making lookup times 

reliable, no matter what key we search for. In 

the database world we love all kinds of 

reliability!

The technical details of B-trees will not be 

covered here, but in case you are not familiar 

with them already, I really encourage you to 

read up on B-trees ASAP! Wikipedia or any 

introductory book on databases is a place to 

start. 

Well, a few facts are too important to 

leave out:

Space

Each node in a B-tree is stored in a data page 

and may therefore induce an expensive I/O 

when accessed. New keys are inserted in the 

leaf pages, and whenever a page becomes full, 

it is split into two. And here is the important 

part: under normal circumstances 50% of the 

contents of the full page is put on the first 

node, and the rest on the second node. This 

gives us two nodes that are only half-way full, 

which is a good strategy if the keys are 

inserted in random order. However, filling the 

buffer with only half-full pages is clearly a sub-

optimal utilization of the costly buffer space. If 

the keys being inserted are monotonically 

increasing, the database can utilize this fact to 

make a far more space efficient split strategy: 

SQL Server will fill leaf nodes entirely (splitting 

them 100% / 0% instead of 50% / 50%), and 

Oracle will even optimize splits of internal 

nodes, splitting them 90% / 10%. This 

optimization has a huge impact on the 

performance, as we shall see later.

In the general case, we have no influence 

on the order in which keys are inserted, but in 

one important case we do: primary keys! So, 

using a monotonically increasing type as 

primary key will automatically imply far better 

space efficiency and thus a far better 

performance. 

Order

There is one more reason for choosing a 

monotonically increasing type as primary key: 

a B-tree index can be a “clustering index” 

which means that the table rows are physically 

organized in the order given by the index key. 

In most, if not all, databases, a clustered index 

is the physical representation of the table, in 

the sense that the leaf pages contain the real 

data rows instead of just a pointer to them. A 

clustered index uniquely defines the row 

ordering, so at most one clustered index can 

exist per table. The order-by-key paradigm has 

some side effects: if keys for two rows are 

close, chances are high that these rows are 

located in the same page or in consecutive 

pages. In other words: when the keys 

somehow indicate a relationship between the 

rows, “related” (whatever this means) rows will 

tend to be on the same page or in consecutive 

pages, and they can therefore be accessed 

using a minimal amount of I/O. Conversely, if 

two keys are far apart, the corresponding rows 

will probably be stored in different pages, and, 

if not cached in buffer, require an increased 

amount of expensive I/O.

Let's have a closer look at three common 

choices of data types for primary keys: random 

GUIDs, sequential GUIDs and integers. Well, 

and strings...

Sequential key order is nice 
In B-trees, keys are 
inserted at leaf level, 
and some of the keys 
propagate up in the tree 
to guide the search. If 
the keys are sequential, 
the leaf pages will be 
100% filled, giving a 
really compact tree. 
Oracle even splits inner 
nodes cleverly in that 
case! If the key order is 
random, this optimization 
is not obtained.

KEY ORDER

8  5  1  4  72  42  3

67  68  69  70  71  72
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point when the server is rebooted. Advantages 

of S-GUIDs include:

✓ they are sequential and will therefore 

perform significantly better than R-GUIDs, 

as we shall see later;

✓ they are unique across systems;

✓ the datatype is still “GUID”, meaning that 

existing datatypes for table columns and 

client code can stay unaltered when 

transforming R-GUIDs to S-GUIDs.

Drawbacks of S-GUIDs:

- the strict monotonicity may break upon 

server reboots;

- there is a single-point-of-origin;

- they are still 16 bytes wide, which is a lot for 

an ID;

- the privacy property of R-GUIDs doesn't 

exist for S-GUIDs.

Integers

In the good old days, before the widespread 

use of GUIDs, a common choice for primary 

key was a sequentially increasing integer, 

which is a natively supported datatype in most 

databases. Integers are typically only 4 (or 8) 

bytes wide which is more than sufficient for 

most (all) cases. Think about it: will there ever 

pass more than 231 = 2 billion rows (or the 

double amount for the unsigned type) through 

your table? Most likely not. And will there ever 

pass more than 263 = 9,223[and 15 more digits] 

through? Certainly not! A signed 8 byte integer 

allows 29 million rows to be inserted every 

second for 10,000 years! Advantages of 

sequential integers:

✓ they are sequential and therefore have all the 

performance goodies that come with this 

property;

✓ the sequence is stable across reboots;

✓ they are only 4 bytes wide. Or 8 bytes in the 

very rare cases where 4 bytes is not enough. 

For unclustered indexes this gives a 

relatively better page utilization compared to 

GUIDs!

✓ they are easy to read and type in manually 

for testing purposes.

Drawbacks:

- an internal shared resource implies a small 

overhead for locking;

- the single-point-of-origin;

- the potential privacy problem described 

above.

Strings

Technically, there is also strings, which I have 

actually seen used as primary key type 

surprisingly often.

While they might be easy to read and 

interpret, they must either be entered manually 

or contain some auto-generated random or 

sequential element in which case a GUID or 

preferably an integer could, technically, have 

been used instead. The readability should (and 

can) be handled in other ways. The advantage 

of strings:

✓ they are easy to read.

Disadvantages:

- strings, and the data structures they imply, 

will most likely be overwhelmingly huge and 

space inefficient compared to a sequential 

integer;

- the potential privacy problem described 

above.

Typical key types
Random GUIDs

A conventional GUID is a 16-byte Globally 

Unique IDentifier with a pseudo-random 

behavior which is guaranteed to be, well, 

world-wide unique. For the sake of 

abbreviation, let’s refer to them as R-GUIDs. 

Here is an example of three R-GUIDs:

0AF92AC9-8B45-4B9F-9E0D-E6A5C9023E91
8A9EF766-0A4E-437D-8DF9-E389CD1C7543
5B899EE7-7F0D-40FE-A788-4A20E8135E92

R-GUIDs are nice because

✓ they can be created programmatically 

without a roundtrip to the database. No 

single-point-of-origin, which is good when 

data is created in a distributed environment;

✓ R-GUIDs are unique across systems which 

is a practical property for data exchange;

✓ their random nature will spread 

consecutively inserted rows into different 

pages, thereby reducing or eliminating 

access contention on a single page;

✓ privacy concerns may require the IDs of 

related entities to be obfuscated and not be 

deducible from time-of-insertion.

But they also have some major drawbacks:

- their random nature will imply an awful lot of 

I/O for both reads and writes (SELECTs and 

INSERTs/UPDATEs);

- we have seen that choosing a primary key 

that somehow keeps related rows together 

will save I/O. But what is a good choice of 

relationship? It's certainly not random!

- in fact, because of their random nature, an 

R-GUID is probably the worst possible key 

for most practical use cases;

- 16 bytes are likely far more than needed. 

Especially for “normal” non-clustering 

indexes this will oversize the index 

significantly.

Sequential GUIDs

SQL Server provides a sequential GUID 

datatype (let's denote it S-GUID) that almost 

eliminates the largest drawback for R-GUIDs: 

the randomness. S-GUIDs may look like this:

21941C1C-6DAA-E011-AC65-6C626DCA5E45
23941C1C-6DAA-E011-AC65-6C626DCA5E45

25941C1C-6DAA-E011-AC65-6C626DCA5E45

Since S-GUIDs are created on the server, they 

cannot be created programmatically on the 

client side, but as shown later, this does not 

necessarily imply an increased number of 

database roundtrips. You should notice that S-

GUIDs are not guaranteed to be sequential 

across a reboot. That is, the monotonically 

increasing sequence may get a new starting 

BUT...
1. In most cases, the single-point-of-origin property is 

not a problem: we do not have to use an extra database 
roundtrip to obtain the generated key as seen on the 
next page. And even if we did (which we don't), 
chances are that the performance gain obtained by 
switching from R-GUIDs to sequential integers far 
dominates the performance reduction induced by the 
extra roundtrip.

2. Personally, I have never experienced a situation where 
the order of row insertion had to be obfuscated by 
randomizing the primary key. Never. Such situations 
exist though, but be really really sure that your 
situation is one of them before you decide to use a 
random primary key.
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High-level memory caching
A high-level memory cache is not something 

the database provides natively, but 

nevertheless a concept everyone should 

consider as a fundamental part of their 

application’s architecture: the database buffer 

is not buffering high-level objects in contrast to 

a memory cache which stores the structures 

exactly as we need them, thereby saving 

(expensive) build time; the overhead from the 

database access may constitute a significant 

part of the total transaction time; and by using 

a distributed cache, the amount of memory 

practically becomes unlimited. So, if an 

application uses a number of data structures 

that require more than a moderate amount of 

database or CPU work to build, a significant 

performance boost can probably be achieved 

by caching these high-level data structures in a 

fast memory cache.

The expected impact from a memory cache 

depends on the data structure access pattern, 

but generally increases with the ratio between 

how often they are read and updated. Actually, I 

will make a somewhat bold statement: in the 

general case, if you ever expect your 

application to scale well, a high-level object 

memory cache is simply a must!

The great thing about caches is that they 

can be implemented iteratively object-by-

object, starting with the heaviest bottleneck-

object first. 

A common choice of memory cache that 

is also used by giants such as Wikipedia, Flickr, 

Twitter, YouTube, and others is memcached, 

which is an extremely (!) fast and distributed 

memory cache. In short, distributed means that 

if you ever need more cache memory, just add 

machines to the cache pool, and you are good 

to go. RANDOM FACT #2
Implementing a memory cache can be easy 
GetProduct(id) {
   cacheKey = ‘products’ + id
   if(ExistsInCache(cacheKey))
      return GetFromCache(cacheKey);
   product = BuildComplicatedProduct(id);
   StoreInCache(cacheKey, product);
   return product;
}

StoreProduct(product)
{
   UpdateDatabase(product);
   cacheKey = ‘products’ + product.id;
   RemoveFromCache(cacheKey);
} 

RANDOM FACT #1
In SQL Server, sequential integers and S-GUIDs can be 
generated using, respectively, the SQL:

   create table myIntTable(
       id int not null identity primary key,
       stuff varchar(100)
   );

   insert into myIntTable(stuff) values (‘someStuff’);

and

   create table mySGUIDTable(
       id uniqueidentifier not null
          default newsequentialid() primary key,
       stuff varchar(100)
   );

   insert into mySGUIDTable(stuff) values (‘someStuff’);

We can retrieve the generated IDs by using the “output 
clause” in TSQL, or, for sequential integers, by using 
two build-in functions. No need for an extra database 
roundtrip:

scope_identity() returns the latest generated identity 
across all tables within the current connection. 

ident_current(‘tableName’) returns the latest generated 
identity for the specified table within the current 
connection.

Example:
   insert into myIntTable(stuff) values (‘someStuff’);
   insert into myChildTable(parentId, otherStuff)
       values (scope_identity(), ‘someOtherStuff’); 

Unload the 
database with 

a memory 
cache

...
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Some practical experiments
A number of practical experiments was 

carried out to see if the theory from the 

preceding pages really holds. The experiments 

were performed on a 2.8 GHz 8 core machine 

with 8 GB RAM, and a 7200 RPM SATA disk, 

running 64 bit Windows 7 and SQL Server 

2008. We compare the efficiency of three basic 

classes of operations for varying type of 

primary key, and varying row size. The 

operations measured are:

1. insertion of 500.000 new rows in a table;

2. read access to 100 rows in the order of 

their insertion;

3. read access to 100 randomly picked rows.

The sequence of experiments was executed 10 

times in order to minimize the influence of 

unrelated events on the machine, and the 

measurements shown here are (mostly) the 

averages of the seen numbers.

The row sizes shown in the graphs are the total 

column widths. Note that the shown sizes 

exclude the metadata associated to each row 

(at least 9 bytes).

Results for row insertion

The graphs in the box above illustrate the 

results for row insertion. As the variance in 

execution time was relatively large for this 

experiment, the first graph shows the 

execution time for each individual test run 

together with a linear trend line. There are three 

immediate observations:

1. the execution time increases with the row 

width;

2. the execution time is almost given by the 

amount of I/O; and

3. integers and S-GUIDs perform almost 

equally good, while R-GUIDs perform 

poorly.

The two smaller graphs to the right give a good 

explanation to these observations: as the rows 

grow, so does the total table size, and our 

buffer hit ratio consequently decreases. Also, 

the pages storing the table with an R-GUID as 

primary key is packed much less efficiently 

(less than 75% full) than the pages holding 

integer and S-GUID keys (which are almost 

100% full).   

Quick bonus info: a call to identity() for 

generating a sequential integer is actually 

significantly slower than a call to 

newsequentialid() for generating an S-GUID. 

This is because the former needs to lock a 

shared resource, while the latter generates the 

ID without maintaining an internal state.

INSERTING 500.000 ROWS
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Results for row reading

Take a look at the graphs to the right, 

illustrating the execution time and I/O for 

reading 100 rows in random and sequential 

order, respectively. In the first case, reading 

random rows, all three datatypes perform 

almost identically, with a small advantage to 

the integers. As we shall see in a moment, 

the performance for all datatypes is poor, 

and this is because random access is the 

most buffer-unfriendly access pattern 

imaginable.

In contrast, when reading consecutive or 

nearly-consecutive rows, we can really take 

advantage of the buffer: many of the rows 

will exist in the same already buffered page, 

and by prefetching multiple pages, the total 

amount of I/O costs can also be optimized. 

This can be seen in the rightmost graphs, 

where integers and S-GUIDs totally 

outperform R-GUIDs with a minimum 

amount of I/O, and an almost non-increasing 

execution time when the row size increases. 

In these experiments, integers and S-GUIDs 

are 4 to 10 times faster than R-GUIDs.

Unclustered indexes

Not surprisingly, we see that an unclustered 

index on a 4 byte integer is smaller than an 

index on any 16 byte GUID (see graph). And 

as for tables and clustered indexes, wider 

index keys means larger index structure.

Notice that the GUID index is actually less 

than 4 times larger than the integer index. 

This is because indexes also store metadata 

with each entry.

READING

For random access, the execution time suffers from 
poor buffer and I/O utilization. For sequential 
access, the buffer really speeds things up! Well, 
for sequential keys (not R-GUIDs), that is...
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the theory
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• R-GUIDs perform horribly as primary keys 

as soon as the number of rows is anything 

but trivial. If no other choice is obvious, use 

(small) sequential integers instead as the 

database can utilize their monotonicity to 

highly improve both space utilization and I/O 

costs. Well, as described earlier, there exist 

situations where random keys are exactly 

what you want, but these situations are rare, 

and you should be absolutely certain about 

your privacy or contention problem before 

following that path. To read more about this 

and relevant situations, google “reverse key 

indexing”.

• Use small datatypes whenever possible. 

Every bit counts, so never use a larger 

datatype than needed. Small datatypes give 

a better space utilization and will likely give 

you a higher buffer hit ratio. This is 

especially true for unclustered indexes 

where a change of column width will be 

higher, relative to the total row width in the 

index.

• Talking about space: be careful to only 

include relevant columns in multi-column 

indexes. Needless to say, the more 

columns, the wider index entries.

• Be careful when representing various kinds 

of categories and semi-IDs as strings. 

Especially when the number of rows is large. 

Strings are wider than integers, so probably 

you would get a better performance by 

putting these strings/labels in a separate ID-

to-label table and referring to the relevant 

(small integer) IDs in the large original table 

(and in your code) instead. If the amount of 

categories/labels is small, the ID-to-label 

table will quickly exist entirely in buffer. 

Besides, you can then easily 

rename a category without 

destroying the references to it - 

just rename the relevant row in the 

ID-to-label table.

• A common way to reduce 

the need for table joins is 

to replicate columns from 

one of the involved tables 

into the other table(s). 

This technique is called de-

normalization. Surely, this 

may avoid accessing the table 

whose columns are now replicated, but it 

also increases the row size of the target 

table. Furthermore, all copies of the 

replicated columns must be accessed when 

updated! Depending on the access pattern, 

the performance decrease induced by the 

lower buffer hit ratio and increased write 

costs may be much larger than the 

performance increase gained from saving 

the join. In the general case you should 

therefore avoid de-normalization, and be 

absolutely sure that it will actually have a 

positive performance impact before you do 

it.

• Clustering rows by a foreign key is a way 

to co-locate related rows. However, carefully 

analyze that the actual access pattern 

benefits from this choice of clustering (pay 

special attention to the page density and 

sequential access of subsets within a single 

foreign key).

• If your tables are defined indirectly from 

code (programmatically) using a class 

persister, be careful to only persist clean 

native types as table columns: depending 

on the class persister, a high-level 

class defined as “column” may be 

expanded to multiple native-type columns 

by the class persister. This can be an 

expensive affair due to the possible 

considerable extra row width. There is 

probably a reason why the high-level class is 

defined as its own, instead of being 

“merged” with the class you are persisting: if 

there is a one-to-many or many-to-many 

relationship you will get multiple identical 

occurrences of the same object in your 

table. Not space efficient. And if you modify 

one of the high-level objects, all its 

representatives in the table will have to be 

updated as well, probably causing a massive 

amount of I/O. Chances are that you would 

be better of with a normalized design, 

putting the high-level objects in their own 

table and referring to them by their primary 

key (e.g. a small integer) in the main table 

instead.

• Use a high-level memory cache, such as 

memcached, to speed up the retrieval of 

high-level data structures by taking off the 

corresponding load from the database and 

CPU. When used right, a memory cache can 

be the difference between snail and rail!

LESSONS LEARNED
Basically, there is only one fundamental goal: 
save space, save I/O! This implies...

Further reading
There has been written a lot on database 

tuning, and it can be hard to find 

something good. I recommend the 

following:

• A great all-round book that covers a lot 
of tuning tips, loaded with practical 
experiments: Database Tuning - 
Principles, Experiments, and 
Troubleshooting Techniques by Dennis 
Elliott Shasha, Philippe Bonnet and Jim 
Grey.

• An inspiring website on high scalability 
with lots of insights from the big 
players and with numerous suggestions 
for further reading: 
www.highscalability.com

• The “behind the scenes” book for your 
database. E.g. Microsoft SQL Server 
2008 Internals by Kalen Delaney.

• The blogs on sqlskills.com (for SQL 
Server) or asktom.oracle.com (for 
Oracle).

Check it out...
Did you know that databases are not all 

“row stores” like SQL Server, Oracle, DB2, 

MySQL, PostgrSQL, etc? Other types 

may better fit your needs. Google the 

following keywords: “cassandra”, 

“vectorwise”, “voltdb.com”, 

“vertica.com”, “column store”, “key value 

store”, “hadapt”.

   

Great design, 
great speed


